
Requirements Toolbox™
Reference

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Requirements Toolbox™ Reference
© COPYRIGHT 2017–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2017 Online only New for Version 1.0 (Release 2017b)
March 2018 Online only Revised for Version 1.1 (Release 2018a)
September 2018 Online Only Revised for Version 1.2 (Release 2018b)
March 2019 Online only Revised for Version 1.3 (Release R2019a)
September 2019 Online Only Revised for Version 1.4 (Release 2019b)
March 2020 Online only Revised for Version 1.5 (Release 2020a)
September 2020 Online only Revised for Version 1.6 (Release 2020b)
March 2021 Online only Revised for Version 1.7 (Release 2021a)
September 2021 Online only Revised for Version 1.8 (Release 2021b)
March 2022 Online only Revised for Version 2.0 (Release 2022a)
September 2022 Online only Revised for Version 2.1 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions
1

Classes
2

Methods
3

Blocks
4

Requirements Toolbox Tools and Apps
5

Operators
6

Objects
7

iii

Contents

Functions

1

addAssumptionRow
Package: slreq.modeling

Add assumption to Requirements Table block

Syntax
AssumptionRow = addAssumptionRow(reqTable)
AssumptionRow = addAssumptionRow(reqTable,Name=Value)

Description
AssumptionRow = addAssumptionRow(reqTable) adds an assumption to the Requirements
Table block, specified by reqTable.

AssumptionRow = addAssumptionRow(reqTable,Name=Value) adds an assumption by using
one or more name-value arguments.

Examples

Add an Assumption to a Requirement Table Block

Create a Requirements Table block and retrieve the RequirementsTable object.

table = slreq.modeling.create("myModel");

Add an assumption to the block.

row = addAssumptionRow(table);

Add an Assumption with a Precondition and Postcondition

Create a Requirements Table block and retrieve the RequirementsTable object.

table = slreq.modeling.create("myModel");

Add an assumption to the block with expressions in the Precondition and Postcondition columns.

row = addAssumptionRow(table, Preconditions={'u1 > 1'},...
Postcoditions={'y1 > 0'});

Input Arguments
reqTable — Requirements Table block
RequirementsTable object

Requirements Table block, specified as a RequirementsTable object.

1 Functions

1-2

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: addAssumptionRow(table,rowType="normal",Preconditions={'u1 > 0'}) adds
an assumption to a Requirements Table block with a precondition u1 > 0.

Preconditions — Precondition expression
{''} (default) | cell array of character vectors

Precondition expression, specified as a cell array of character vectors. For more information on
preconditions in assumptions, see “Add Assumptions to Requirements”.
Data Types: char | cell

Postconditions — Postcondition expression
{''} (default) | cell array of character vectors

Postcondition expression, specified as a cell array of character vectors. For more information on
postconditions in assumptions, see “Add Assumptions to Requirements”.
Data Types: char | cell

rowType — Assumption type
"normal" (default) | "anyChildActive" | "allChildrenActive"

Assumption type, specified by one of these values:

Value Description
"normal" Creates a normal assumption with all of the

available properties.
"anyChildActive" Creates an Any Child Active semantic

assumption. The parent assumption cannot have
a precondition, and the children cannot have a
postcondition.

"allChildrenActive" Creates an All Child Active semantic assumption.
The parent assumption cannot have a
precondition, and the children cannot have a
postcondition.

You can create normal assumptions or semantic assumptions. For more information on semantic
requirements and assumptions, see “Add Semantic Rows”. If you do not include this name-value pair,
the function creates a normal assumption.
Data Types: enumerated

Summary — Assumption summary text
"" (default) | string scalar | character vector

Assumption summary text, specified as a string scalar or character vector. Use this name-value
argument to add text to the Summary column in the Assumptions tab of the Requirements Table
block.

 addAssumptionRow

1-3

Data Types: char | string

Output Arguments
AssumptionRow — Assumption
AssumptionRow object

Assumption, returned as an AssumptionRow object.

Version History
Introduced in R2022a

See Also
Blocks
Requirements Table

Functions
addRequirementRow | getAssumptionRows

Objects
RequirementsTable | AssumptionRow

Topics
“Establish Hierarchy in Requirements Table Blocks”

1 Functions

1-4

addChild
Package: slreq.modeling

Add child requirement or assumption to Requirements Table block

Syntax
newChild = addChild(row)
newChild = addChild(row,Name=Value)

Description
newChild = addChild(row) adds a child row to the requirement or assumption specified by row.

newChild = addChild(row,Name=Value) adds a child row using one or more name-value
arguments. The available name-value arguments depend on whether row is a requirement or
assumption.

Examples

Add a Child Requirement to a Requirement Table Block

Create a Requirements Table block and retrieve the RequirementsTable object.

table = slreq.modeling.create("myModel");

New Requirements Table blocks start with one requirement. Find the RequirementRow object that
corresponds to the requirement by using the getRequirementRows function.

row = getRequirementRows(table);

Add a child to the requirement.

childReq = addChild(row);

Add a Child Assumption with a Precondition and Postcondition

Create a Requirements Table block and retrieve the RequirementsTable object.

table = slreq.modeling.create("myModel");

Add an assumption to the block by using the addAssumptionRow function.

row = addAssumptionRow(table);

Add a child with expressions in the Precondition and Postcondition columns to the assumption.

 addChild

1-5

child = addChild(row,Preconditions={'u1 > 1'},...
Postcoditions={'y1 > 0'});

Input Arguments
row — Requirement or assumption
RequirementRow object | AssumptionRow object

Requirement or assumption in a Requirements Table block, specified as a RequirementRow or
AssumptionRow object. To retrieve the row, use getRequirementRows, getAssumptionRows, or
getChildren.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: newChild = addChild(row,Preconditions={'u1 > 1'},Duration="5") returns a
child requirement from the RequirementRow object row that has the precondition u1 > 1 and a
duration equal to 5. This example produces an error if row is a AssumptionRow, because
assumptions do not have a duration property.

Actions — Action expressions
{''} (default) | cell array of character vectors

Action expressions, specified as a cell array of character vectors. You can only specify this property if
row is a RequirementRow object. For more information on actions, see “Use a Requirements Table
Block to Create Formal Requirements”.
Data Types: cell | char

Duration — Duration expression
"" (default) | string scalar | character vector

Duration expression, specified as a string scalar or character vector. You can only specify this
property if row is a RequirementRow object. For more information on the duration, see “Control
Requirement Execution by Using Temporal Logic”.
Data Types: char | string

Preconditions — Precondition expressions
{''} (default) | cell array of character vectors

Precondition expressions, specified as a cell array of character vectors. If row is an assumption, you
can specify only one precondition per child. For more information on preconditions, see “Use a
Requirements Table Block to Create Formal Requirements”.
Data Types: cell | char

Postconditions — Postcondition expression
{''} (default) | cell array of character vectors

Postcondition expressions, specified as a cell array of character vectors. If row is an assumption, you
can specify only one postcondition per child. For more information on postconditions, see “Use a
Requirements Table Block to Create Formal Requirements”.

1 Functions

1-6

Data Types: cell | char

rowType — Row type
"row" (default) | "defaultRow" | "anyChildActive" | "allChildrenActive"

Row type, specified as one of these values:

Value Description
"row" Creates a normal child row with all of the

available properties.
"defaultRow" Creates a default semantic child row. Default

rows cannot have a precondition.
"anyChildActive" Creates a semantic child row where any of the

child rows can be active. The children of the
added row cannot have postconditions or actions,
and the added row cannot have preconditions.
See “Add Semantic Rows”.

"allChildrenActive" Creates a semantic child row where all of the
child rows must be active. The children of the
added row cannot have postconditions or actions,
and the added row cannot have preconditions.
See “Add Semantic Rows”.

If you do not include this name-value pair, the function creates a normal row.
Data Types: enumerated

Summary — Child row summary text
"" (default) | string scalar | character vector

Child row summary text, specified as a string scalar or character vector. Use this name-value
argument to add text to the Summary column in the Requirements or Assumptions tabs of the
Requirements Table block.
Data Types: char | string

Output Arguments
newChild — Child requirement or assumption
RequirementRow or AssumptionRow object

Child requirement or assumption, returned as the same object type specified by the input argument
row. For example, if row is a RequirementRow, newChild is a RequirementRow. For more
information on requirement hierarchies in Requirements Table blocks, see “Establish Hierarchy in
Requirements Table Blocks”.

Version History
Introduced in R2022a

See Also
RequirementRow | AssumptionRow | RequirementsTable

 addChild

1-7

Topics
“Define Requirements Hierarchy”
“Establish Hierarchy in Requirements Table Blocks”

1 Functions

1-8

addLink
Package: oslc.rm

Add link to local OSLC requirement resource object

Syntax
addLink(reqResource,resource)

Description
addLink(reqResource,resource) adds an RDF/XML element to the requirement or requirement
collection resource specified by reqResource. The function sets the element name to j.0:Link and
the rdf:resource attribute to the resource URL associated with resource. Use the commit
function to apply the change to the service provider. For more information about RDF/XML elements,
see An XML Syntax for RDF on the World Wide Web Consortium website and QM Resource
Definitions on the Open Services for Lifecycle Collaboration (OSLC) website.

Examples

Add and Remove Links from OSLC Resources to Requirement

This example shows how to add and remove links from OSLC resources to an OSLC requirement.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type. Submit a query request to the service provider for the
available requirement resources.

myQueryCapability = getQueryService(myClient,'Requirement');
reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign one of the requirements to a variable called myReq and one to linkReq. Fetch the full
resource properties for the requirements.

myReq = reqs(1);
linkReq = reqs(5);
fetch(myReq,myClient);
fetch(linkReq,myClient);

Add a link from linkReq to myReq. Confirm the link creation by getting the links for myReq.

 addLink

1-9

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions

addLink(myReq,linkReq)
links = getLinks(myReq)

links =

 1×1 cell array

 {'https://localhost:9443/rm/CA_3d5ba3752e2c489b965a3ecceffb664a'}

In the service provider, identify a test case to link to the requirement. Identify the resource URL of
the test case and assign it to a variable called URL. Add a link from URL to myReq. Confirm the link
creation by getting the links for myReq.

URL = 'https://localhost:9443/qm/_ibz6tGWYEeuAF8ZpKyQQtg';
addLink(myReq,URL)
links = getLinks(myReq)

links =

 1×2 cell array

 {'https://localhost:9443/rm...'} {'https://localhost:9443/qm...'}

Commit the changes to the service provider.

status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

Fetch the full resource properties for the updated requirement myReq.

status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

Get the resource URLs linked to myReq.

links = getLinks(myReq)

links =

 1×2 cell array

 {'https://localhost:9443/rm...'} {'https://localhost:9443/qm...'}

Get the URL for the first linked resource and assign it to URL.

URL = links{1}

URL =

 'https://localhost:9443/rm/CA_3d5ba3752e2c489b965a3ecceffb664a'

1 Functions

1-10

Before removing the link from myReq, confirm that the resource URL points to the requirement that
you want to remove. Create a requirement resource object and set the resource URL. Fetch the full
resource properties for the requirement and inspect the requirement.

req = oslc.rm.Requirement;
setResourceUrl(req,URL);
status = fetch(req,myClient)

status =

 StatusCode enumeration

 OK

req

ans =

 Requirement with properties:

 ResourceUrl: 'https://localhost:9443/rm/CA_3d5ba3752e2c489b965a...'
 Dirty: 0
 IsFetched: 1
 Title: '[SAFe] Lifecycle Scenario Template'
 Identifier: '1165'

Remove the link from myReq and commit the changes to the service provider.

removeLink(myReq,URL)
status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

Fetch the full resource properties for the updated requirement myReq.

status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

Verify the link removal by getting the URLs for the resources linked to myReq.

links = getLinks(myReq)

links =

 1×1 cell array

 addLink

1-11

 {'https://localhost:9443/qm/_ibz6tGWYEeuAF8ZpKyQQtg'}

Input Arguments
reqResource — OSLC requirement resource
oslc.rm.Requirement object | oslc.rm.RequirementCollection object

OSLC requirement or requirement collection resource object, specified as an
oslc.rm.Requirement or oslc.rm.RequirementCollection object.

resource — OSLC resource URL or object
character vector | oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource URL, specified as a character vector or OSLC resource object, specified as one of
these objects:

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

Tips
• You can also add a link with addResourceProperty to specify the relationship of the link.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection | removeLink |
getLinks | addRequirementLink

1 Functions

1-12

addRequirementLink
Package: oslc.qm

Add requirement traceability link to local OSLC test resource object

Syntax
addRequirementLink(testResource,requirementURL)

Description
addRequirementLink(testResource,requirementURL) adds an RDF/XML element to the test
case or test script resource specified by testResource. The function sets the element name to
oslc_qm:validatesRequirement and the rdf:resource attribute to requirementURL. Use the
commit function to apply the change to the service provider. For more information about RDF/XML
elements, see An XML Syntax for RDF on the World Wide Web Consortium website and QM Resource
Definitions on the Open Services for Lifecycle Collaboration (OSLC) website.

Examples

Add, Get, and Remove Traceability Links from a Test Case to a Requirement

This example shows how to add, remove, and get OSLC requirement resources linked to a test case
resource with a previously configured OSLC client.

After you have created and configured an OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test case resource type.

myQueryCapability = getQueryService(myClient,'TestCase');

Submit a query request to the service provider for the available test case resources.

testCases = queryTestCases(myQueryCapability)

testCases =

 1×5 TestCase array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Retrieve the requirement resources linked to one of the test cases. Fetch the resource properties
from the service provider for the test case.

myTestCase = testCases(1);
fetch(myTestCase,myClient);
reqs = getRequirementLinks(myTestCase)

 addRequirementLink

1-13

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions

reqs =

 Requirement with properties:

 ResourceUrl: 'https://localhost:9443/rm/resources/_aQ1gRg8bEeuLWbFe'
 Dirty: 1
 IsFetched: 0
 Title: ''
 Identifier: ''

Remove the existing link to the requirement resource from the test case resource. Commit the
changes to the service provider.

removeRequirementLink(myTestCase,reqs.ResourceUrl);
status = commit(myTestCase,myClient)

status =

 StatusCode enumeration

 OK

To add a link to a requirement, in the OSLC service provider, locate the requirement resource that
you want to link to the test case resource. Identify the resource URL. Create a variable URL and set
the value of the variable to the requirement URL that you found in the service provider.

URL = 'https://localhost:9443/rm/resources/_oJNtgWrqEeup0a6t';

Create a traceability link between the requirement resource and the test case. Commit the change to
the service provider.

addRequirementLink(myTestCase,URL);
status = commit(myTestCase,myClient)

status =

 StatusCode enumeration

 OK

View the test case in the system browser.

show(myTestCase)

Input Arguments
testResource — OSLC test resource
oslc.qm.TestCase object | oslc.qm.TestScript object

OSLC test resource, specified as an oslc.qm.TestCase or oslc.qm.TestScript object.

requirementURL — Requirement resource URL
character vector

Requirement or requirement collection resource URL, specified as a character vector.

1 Functions

1-14

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.qm.TestCase | oslc.qm.TestScript |
oslc.rm.RequirementCollection | getRequirementLinks | removeRequirementLink

 addRequirementLink

1-15

addRequirementRow
Package: slreq.modeling

Add requirement to Requirements Table block

Syntax
RequirementRow = addRequirementRow(reqTable)
RequirementRow = addRequirementRow(reqTable,Name=Value)

Description
RequirementRow = addRequirementRow(reqTable) adds a requirement to the Requirements
Table block specified by reqTable.

RequirementRow = addRequirementRow(reqTable,Name=Value) adds a requirement using
one or more name-value arguments.

Examples

Add a Requirement to a Requirements Table Block

Create a Requirements Table block and retrieve the RequirementsTable object.

table = slreq.modeling.create("myModel");

Add a requirement to the block.

row = addRequirementRow(table);

Add a Requirement with Preconditions, Postconditions, and Actions

Create a Requirements Table block and retrieve the RequirementsTable object.

table = slreq.modeling.create("myModel");

Add a requirement to the block with expressions in the Precondition and Postcondition columns.

row = addRequirementRow(table,Preconditions={'u1 > 1'},...
Postcoditions={'y1 > 0'},Actions={'y2 = 1'});

Input Arguments
reqTable — Requirements Table block
RequirementsTable object

Requirements Table block, specified as a RequirementsTable object.

1 Functions

1-16

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: addRequirementRow(table,Preconditions={'u1 > 0'}) adds a requirement to a
Requirements Table block with a precondition u1 > 0.

Actions — Action expressions
{''} (default) | cell array of character vectors

Action expressions, specified as a cell array of character vectors. For more information on actions,
see “Use a Requirements Table Block to Create Formal Requirements”.
Data Types: char | cell

Duration — Duration expression
"" (default) | string scalar | character vector

Duration expression, specified as a string scalar or character vector. For more information on the
duration, see “Control Requirement Execution by Using Temporal Logic”.
Data Types: char | string

Preconditions — Precondition expressions
{''} (default) | cell array of character vectors

Precondition expressions, specified as a cell array of character vectors. For more information on
preconditions, see “Use a Requirements Table Block to Create Formal Requirements”.
Example: addRequirementRow(table,Preconditions={'u1 > 0','','u3 > 0'}) adds a
requirement to a Requirements Table block with u1 > 0 in the first Precondition column, nothing in
the second Precondition column, and u3 > 0 in the third Precondition column.
Data Types: char | cell

Postconditions — Postcondition expressions
{''} (default) | cell array of character vectors

Postcondition expressions, entered as a string array or cell array of character vectors. For more
information on postconditions, see “Use a Requirements Table Block to Create Formal
Requirements”.
Example: addRequirementRow(table,Postconditions={'u1 > 0','','u3 > 0'}) adds a
requirement to a Requirements Table block with u1 > 0 in the first Postcondition column, nothing
in the second Postcondition column, and u3 > 0 in the third Postcondition column.
Data Types: char | cell

rowType — Requirement type
"normal" (default) | "default" | "anyChildActive" | "allChildrenActive"

Requirement type, specified by one of these values:

 addRequirementRow

1-17

Value Description
"normal" Creates a normal requirement with all of the

available properties.
"default" Creates a default semantic requirement. Default

requirements cannot have preconditions.
"anyChildActive" Creates an Any Child Active semantic

requirement. The parent requirement cannot
have preconditions, and the children cannot have
postconditions or actions.

"allChildrenActive" Creates an All Child Active semantic
requirement. The parent requirement cannot
have preconditions, and the children cannot have
postconditions or actions.

You can create normal requirements or semantic requirements. For more information on semantic
requirements and assumptions, see “Add Semantic Rows”. If you do not include this name-value pair,
the function creates a normal requirement.
Data Types: enumerated

Summary — Requirement summary text
"" (default) | string scalar | character vector

Requirement summary text, specified as a string scalar or character vector. Use this name-value
argument to add text to the Summary column in the Requirements tab of the Requirements Table
block.
Data Types: char | string

Output Arguments
RequirementRow — Requirement
RequirementRow object

Requirement, returned as a RequirementRow object.

Version History
Introduced in R2022a

See Also
Blocks
Requirements Table

Functions
addAssumptionRow | getRequirementRows

Objects
RequirementsTable | RequirementRow

1 Functions

1-18

Topics
“Establish Hierarchy in Requirements Table Blocks”
“Leverage Evaluation Order of Formal Requirements”

 addRequirementRow

1-19

addResourceProperty
Package: oslc.rm

Add resource property to local OSLC resource object

Syntax
addResourceProperty(resource,propertyName,resourceURL)

Description
addResourceProperty(resource,propertyName,resourceURL) adds a new element to the
locally stored RDF/XML data for the Open Services for Lifecycle Collaboration (OSLC) resource
specified by resource. The function sets the element name to propertyName and sets the
rdf:resource attribute of the element to resourceURL. Use the commit function to apply the
change to the service provider. For more information about RDF/XML elements, see An XML Syntax
for RDF on the World Wide Web Consortium website.

Examples

Add, Get, and Remove Properties from OSLC Resources

This example shows how to add, get, and remove properties from an existing OSLC requirement
resource.

Create and configure the OSLC client myClient as described in “Create and Configure an OSLC
Client for the Requirements Management Domain” on page 2-3. Then query the service provider
for requirements and assign an oslc.rm.Requirement object to the variable myReq as described in
“Submit a Query Request with Query Capability” on page 1-209.

Retrieve the full resource data from the service provider for the requirement resource myReq.

status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

The requirement myReq has a linked requirement with an implementedBy relationship. Get the
rdf:resource value for the oslc_rm:implementedBy property for the requirement resource
myReq.

linkedReq = getResourceProperty(myReq,'oslc_rm:implementedBy')

linkedReq =

 1×1 cell array

 {'https://localhost:9443/rm/resources/_72lxMWJREeup0...'}

1 Functions

1-20

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax

Change the relationship between the linked requirement and myReq from implementedBy to
decomposedBy. Remove the oslc_rm:implementedBy property and add an
oslc_rm:decomposedBy property.

removeResourceProperty(myReq,'oslc_rm:implementedBy',linkedReq)
addResourceProperty(myReq,'oslc_rm:decomposedBy',linkedReq)

Get the text contents for the dcterms:title property.

title = getProperty(myReq,'dcterms:title')

title =

 'My New Requirement'

Change the title to My New Requirement (Edited). Confirm the changes.

setProperty(myReq,'dcterms:title','My New Requirement (Edited)')
title = getProperty(myReq,'dcterms:title')

title =

 'My New Requirement (Edited)'

Add a new text property to the requirement with the tag dcterms:description. Confirm the
changes.

addTextProperty(myReq,'dcterms:description', ...
 'My new requirement edited using the MATLAB OSLC client.');
desc = getProperty(myReq,'dcterms:description')

desc =

 'My new requirement created using the MATLAB OSLC client.'

Commit the changes to the service provider.

status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

View the resource that you edited in the system browser.

show(myReq)

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

 addResourceProperty

1-21

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

propertyName — OSLC resource property name
character vector

OSLC resource property name, specified as a character vector.

resourceURL — OSLC resource URL
character vector

OSLC resource URL, specified as a character vector.

Tips
• For information about OSLC resource properties, see these pages on the OSLC website:

• RM Resource Definitions
• QM Resource Definitions
• CM Resource Definitions

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | addTextProperty |
getResourceProperty | removeResourceProperty

External Websites
RDF 1.1 XML Syntax

1 Functions

1-22

https://archive.open-services.net/bin/view/Main/RmSpecificationV2.html#RM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/CmSpecificationV2.html#CM_Resource_Definitions
https://www.w3.org/TR/rdf-syntax-grammar/

addSymbol
Package: slreq.modeling

Add data to Requirements Table block

Syntax
data = addSymbol(reqTable)
data = addSymbol(reqTable,Name=Value)

Description
data = addSymbol(reqTable) adds data to the Requirements Table block, specified by
reqTable.

data = addSymbol(reqTable,Name=Value) adds data by using one or more name-value
arguments.

Examples

Add Data to a Requirement Table Block

Create a Requirements Table block and retrieve the RequirementsTable object.

table = slreq.modeling.create("myModel");

Add data to the block.

data = addSymbol(table);

Add Data with Specified Name, Scope, and Type Properties

Create a Requirements Table block and retrieve the RequirementsTable object.

table = slreq.modeling.create("myModel");

Add data to the block and specify the Name, Scope, and Type properties.

data = addSymbol(table,Name="u1",Scope="Output",Type="Single");

Input Arguments
reqTable — Requirements Table block
RequirementsTable object

Requirements Table block, specified as a RequirementsTable object.

 addSymbol

1-23

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: addSymbol(table,Complexity="Off") creates data and sets the complexity of the data
to Off.

Complexity — Whether data accepts complex values
"Off" (default) | "On" | "Inherited"

Whether the data accepts complex values, specified as one of these values:

Complexity Description
"Inherited" The data inherits complexity based on the Scope

property. Input and output data inherit
complexity from the Simulink® signals connected
to the associated input and output ports. Local
and parameter data inherit complexity from the
parameter to which the data is bound.

"Off" The data is a real number.
"On" The data is a complex number.

Data Types: enumerated

isDesignOutput — Whether data is design model output
false or 0 (default) | true or 1

Whether the data is a design model output, specified as a numeric or logical 1 (true) or 0 (false).
This property applies only when the Scope property is Input. For more information, see “Treat as
design model output for analysis”.
Data Types: logical

Name — Name of data
"data" (default) | string scalar | character vector

Name of the data, specified as a string scalar or character vector.
Data Types: char | string

Scope — Scope of data
"Input" (default) | "Output" | "Local" | "Constant" | "Parameter"

Scope of the data that specifies where the data resides in memory relative to the block, specified as
one of these values:

Scope Description
"Input" The data is an input signal to a Requirements

Table block.
"Output" The data is an output signal of a Requirements

Table block.

1 Functions

1-24

Scope Description
"Local" The data is defined in the current block only.
"Constant" The data is a read-only constant value that is

visible to the block.
"Parameter" The data resides in a variable of the same name

in the MATLAB® workspace, the model
workspace, or in the workspace of a masked
subsystem that contains this block.

Data Types: enumerated

Size — Size of data
"-1" (default) | string scalar | character vector

Size of the data, specified as a string scalar or character vector. This property must resolve to a
scalar value or a MATLAB vector of values. The default value is "–1", which means that the size is
inherited. For more information, see “Inherit Size from Simulink” (Simulink).
Data Types: char | string

Type — Data type
"Inherit: Same as Simulink" (default) | "double" | "single" | "int8" | ...

Data type, specified as:

• "Inherit: Same as Simulink"
• "double"
• "single"
• "half"
• "int64"
• "int32"
• "int16"
• "int8"
• "uint64"
• "uint32"
• "uint16"
• "uint8"
• "boolean"
• "string"
• "fixdt(1,16,0)"
• "fixdt(1,16,2^0,0)"
• "Enum: <class name>"
• "Bus: <object name>"

To modify the data type properties, use the Symbols pane and Property Inspector. For more
information, see “Set Data Types in Requirements Table Blocks”.
Data Types: enumerated

 addSymbol

1-25

Output Arguments
data — Data
Symbol object

Data, returned as a Symbol object.

Version History
Introduced in R2022a

See Also
Objects
Symbol | RequirementsTable

Functions
findSymbol

Topics
“Use a Requirements Table Block to Create Formal Requirements”
“Define Data in Requirements Table Blocks”

1 Functions

1-26

addTextProperty
Package: oslc.rm

Add text property to local OSLC resource object

Syntax
addTextProperty(resource,propertyName,textContents)

Description
addTextProperty(resource,propertyName,textContents) adds a new element to the locally
stored RDF/XML data for the Open Services for Lifecycle Collaboration (OSLC) resource specified by
resource. The function sets the element name to propertyName and sets the text contents of the
element to textContents. Use the commit function to apply the change to the service provider. For
more information about RDF/XML elements, see An XML Syntax for RDF on the World Wide Web
Consortium website.

Examples

Add, Get, and Remove Properties from OSLC Resources

This example shows how to add, get, and remove properties from an existing OSLC requirement
resource.

Create and configure the OSLC client myClient as described in “Create and Configure an OSLC
Client for the Requirements Management Domain” on page 2-3. Then query the service provider
for requirements and assign an oslc.rm.Requirement object to the variable myReq as described in
“Submit a Query Request with Query Capability” on page 1-209.

Retrieve the full resource data from the service provider for the requirement resource myReq.

status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

The requirement myReq has a linked requirement with an implementedBy relationship. Get the
rdf:resource value for the oslc_rm:implementedBy property for the requirement resource
myReq.

linkedReq = getResourceProperty(myReq,'oslc_rm:implementedBy')

linkedReq =

 1×1 cell array

 {'https://localhost:9443/rm/resources/_72lxMWJREeup0...'}

 addTextProperty

1-27

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax

Change the relationship between the linked requirement and myReq from implementedBy to
decomposedBy. Remove the oslc_rm:implementedBy property and add an
oslc_rm:decomposedBy property.

removeResourceProperty(myReq,'oslc_rm:implementedBy',linkedReq)
addResourceProperty(myReq,'oslc_rm:decomposedBy',linkedReq)

Get the text contents for the dcterms:title property.

title = getProperty(myReq,'dcterms:title')

title =

 'My New Requirement'

Change the title to My New Requirement (Edited). Confirm the changes.

setProperty(myReq,'dcterms:title','My New Requirement (Edited)')
title = getProperty(myReq,'dcterms:title')

title =

 'My New Requirement (Edited)'

Add a new text property to the requirement with the tag dcterms:description. Confirm the
changes.

addTextProperty(myReq,'dcterms:description', ...
 'My new requirement edited using the MATLAB OSLC client.');
desc = getProperty(myReq,'dcterms:description')

desc =

 'My new requirement created using the MATLAB OSLC client.'

Commit the changes to the service provider.

status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

View the resource that you edited in the system browser.

show(myReq)

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

1 Functions

1-28

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

propertyName — OSLC resource property name
character vector

OSLC resource property name, specified as a character vector.

textContents — OSLC resource text contents
character vector

OSLC resource text content, specified as a character vector.

Tips
• For information about OSLC resource properties, see these pages on the OSLC website:

• RM Resource Definitions
• QM Resource Definitions
• CM Resource Definitions

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | addResourceProperty |
getProperty | setProperty

External Websites
RDF 1.1 XML Syntax

 addTextProperty

1-29

https://archive.open-services.net/bin/view/Main/RmSpecificationV2.html#RM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/CmSpecificationV2.html#CM_Resource_Definitions
https://www.w3.org/TR/rdf-syntax-grammar/

clear
Package: slreq.modeling

Clear row in Requirements Table block

Syntax
clear(row)
clear(row,column)

Description
clear(row) clears the row content in the requirement or assumption, row.

clear(row,column) clears the specified column of the row.

Examples

Clear Contents of Requirement in Requirements Table Block

Retrieve the requirements in a Requirements Table block and clear the first requirement.

requirements = getRequirementRows(reqTable);
clear(requirements(1));

Clear Contents of Assumption in Requirements Table Block

Retrieve the assumptions in a Requirements Table block and clear the first assumption.

assumptions = getAssumptionRows(reqTable);
clear(assumptions(1));

Clear Preconditions of Requirement

Retrieve the requirements in a Requirements Table block and clear the preconditions of the first
requirement.

requirements = getRequirementRows(reqTable);
clear(requirements(1),"Preconditions");

Input Arguments
row — Requirement or assumption
RequirementRow object | AssumptionRow object

1 Functions

1-30

Requirement or assumption in a Requirements Table block, specified as a RequirementRow or
AssumptionRow object. To retrieve the row, use getRequirementRows, getAssumptionRows, or
getChildren.

column — Column type
"Summary" | "Preconditions" | "Duration" | "Postconditions" | "Actions" | ""

Column type to clear, specified as either "Summary", "Preconditions", "Duration",
"Postconditions", "Actions", or an empty string scalar or character vector. If row is an action,
you can only clear the summary, preconditions, or postconditions. If you specify column as an empty
string scalar or character vector, the function clears the entire row.
Data Types: enumerated

Version History
Introduced in R2022a

See Also
RequirementsTable | RequirementRow | AssumptionRow

 clear

1-31

slreq.clear
Clear requirements and links from memory

Syntax
slreq.clear()

Description
slreq.clear() clears all requirements and links loaded in memory and closes the Requirements
Editor, discarding all unsaved changes.

Limitations
If at least one of the requirement sets comes from a model containing a Requirements Table block,
you cannot use slreq.clear(). To use slreq.clear(), close the model first.

Version History
Introduced in R2018a

See Also
slreq.ReqSet | slreq.LinkSet | Requirements Editor

1 Functions

1-32

slreq.closeRequirementsManager
Close Requirements Manager app in model

Syntax
slreq.closeRequirementsManager(model)
slreq.closeRequirementsManager("all")

Description
slreq.closeRequirementsManager(model) closes the Requirements Manager app in the
Simulink model model and brings the model to the front.

slreq.closeRequirementsManager("all") closes the Requirements Manager app in all open
models.

Examples

Open and Close the Requirements Manager App Programmatically

This example shows how to open and close the Requirements Manager app programmatically.

Open the CruiseRequirementsExample project and open the crs_plant model.

slreqCCProjectStart;
open_system("crs_plant");

Open the Requirements Manager app in the crs_plant model.

slreq.openRequirementsManager("crs_plant");

Close the Requirements Manager app in the crs_plant model.

slreq.closeRequirementsManager("crs_plant");

Close the Requirements Manager App in All Open Models

This example shows how to close the Requirements Manager app in all open models.

Open the CruiseRequirementsExample project. Open the crs_plant and crs_controller
models.

slreqCCProjectStart;
open_system("crs_plant");
open_system("crs_controller");

Open the Requirements Manager app in the crs_plant and crs_controller models.

 slreq.closeRequirementsManager

1-33

slreq.openRequirementsManager("crs_plant");
slreq.openRequirementsManager("crs_controller");

Close the Requirements Manager app in all open models.

slreq.closeRequirementsManager("all");

Input Arguments
model — Simulink model
string scalar | character vector | model handle

Simulink model to close the Requirements Manager app in, specified as a string scalar or character
vector that contains the name of the model, or a model handle.

Tips
• Use bdroot to get the top-level model of the current system.
• Use get_param and bdroot to get the handle for the top-level model of the current system:

model = get_param(bdroot,"Handle");

Version History
Introduced in R2021a

See Also
slreq.openRequirementsManager | bdroot | slreq.editor | Requirements Editor

1 Functions

1-34

slreq.cmConfigureVersion
Set version of linked requirements documents

Syntax
prev_version = slreq.cmConfigureVersion(domain,doc_id,version)
prev_version = slreq.cmConfigureVersion(domain,doc_id,version,src)

Description
prev_version = slreq.cmConfigureVersion(domain,doc_id,version) sets the configured
version version of the linked requirements document doc_id of type domain and returns the
previously configured version prev_version.

prev_version = slreq.cmConfigureVersion(domain,doc_id,version,src) sets the
configured version version of the linked requirements document doc_id of type domain for all
links from the Model-Based Design artifact src and returns the previously configured version
prev_version.

Examples
Set Configured Version for All Links to IBM Rational DOORS Module Baseline

Use baseline version 2.2b for all links to the IBM Rational DOORS module 546223g1.

% Set configured version to 2.1b
versionA = slreq.cmConfigureVersion('linktype_rmi_doors','546223g1','2.1b')

versionA =

 0×0 empty char array

% versionA is empty because there is no previously configured version

versionB = slreq.cmConfigureVersion('linktype_rmi_doors','546223g1','2.2b')

versionB =

 '2.1b'

% 2.1b is the previously set configured version

Set Configured Version for Links from Simulink Model to IBM Rational DOORS Module
Baseline

Use baseline version 2.3b for links from the Simulink model myModel.slx to the IBM Rational
DOORS module 00006a12.

% Set configured version to 2.1b
versionA = slreq.cmConfigureVersion('linktype_rmi_doors', '00006a12', '2.1b', 'myModel.slx')

 slreq.cmConfigureVersion

1-35

versionA =

 0×0 empty char array

% versionA is empty because there is no previously configured version

% Set the configured version to 2.3b

versionB = slreq.cmConfigureVersion('linktype_rmi_doors', '00006a12', '2.3b', 'myModel.slx')

versionB =

 '2.1b'

% 2.1b is the previously set configured version

Input Arguments
domain — Document type name
'linktype_rmi_doors' | character vector | string

Registered document type name, specified as a character vector or a string. As of R2019b, link target
version configuration is supported only for IBM® Rational® DOORS® with the value
'linktype_rmi_doors'.

doc_id — Requirements document identifier
character vector | string

Unique identifier for a version-controlled requirements document, specified as a character vector or a
string.

version — Requirements document target version
character vector | string

Target version of the requirements document, specified as a character vector or a string.

src — Source artifact file name
character vector | string

The file name of the Model-Based Design source artifact, specified as a character vector or a string.

Output Arguments
prev_version — Document version
character vector

Previously configured version of the linked requirements document, returned as a character vector.

Version History
Introduced in R2019b

1 Functions

1-36

See Also
slreq.cmGetVersion

 slreq.cmConfigureVersion

1-37

slreq.cmGetVersion
Get configured version of linked requirements documents

Syntax
doc_version = slreq.cmGetVersion(domain,doc_id)
doc_version = slreq.cmGetVersion(domain,doc_id,src)

Description
doc_version = slreq.cmGetVersion(domain,doc_id) queries the configured version
doc_version of the linked requirements document doc_id of type domain.

doc_version = slreq.cmGetVersion(domain,doc_id,src) queries the configured version
doc_version of the linked requirements document doc_id of type domain that is linked to the
Model-Based Design artifact src.

Examples
Query Configured Version for IBM Rational DOORS Module

Get the configured baseline version for the IBM Rational DOORS module 1213424d.

configVer = slreq.cmGetVersion('linktype_rmi_doors','1213424d')

configVer =

 '1.3a'

Query Configured Version for Links from a Simulink Model to IBM Rational DOORS Module

Get the configured baseline version for links from the Simulink model myModel.slx for the IBM
Rational DOORS module 1234a45a.

configVer = slreq.cmGetVersion('linktype_rmi_doors', '1234a45a', 'myModel.slx')

configVer =

 '2.4c'

Input Arguments
domain — Document type name
'linktype_rmi_doors' | character vector | string

Registered document type name, specified as a character vector or a string. As of R2019b, link target
version configuration is supported only for IBM Rational DOORS with the value
'linktype_rmi_doors'.

doc_id — Requirements document identifier
character vector | string

1 Functions

1-38

Unique identifier for a version-controlled requirements document, specified as a character vector or a
string.

src — Source artifact file name
character vector | string

The file name of the Model-Based Design source artifact, specified as a character vector or a string.

Output Arguments
doc_version — Document version
character vector

Configured version of the linked requirements document, returned as a character vector.

Version History
Introduced in R2019b

See Also
slreq.cmConfigureVersion

 slreq.cmGetVersion

1-39

commit
Package: oslc.rm

Send local changes to OSLC service provider

Syntax
status = commit(resource,myClient)

Description
status = commit(resource,myClient) sends the local changes for the resource object
resource to the Open Services for Lifecycle Collaboration (OSLC) service provider associated with
myClient and returns the commit success status.

Examples

Edit a Requirement and Commit Changes

This example shows how to submit a query request for requirement resources with a configured
OSLC client, edit an existing requirement resource, and commit the changes to the service provider.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type.

myQueryCapability = getQueryService(myClient,'Requirement');

Submit a query request to the service provider for the available requirement resources.

reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign a requirement resource to the variable myReq. Retrieve the full resource data from the service
provider for the requirement resource. Examine the Title property.

myReq = reqs(1);
status = fetch(myReq,myClient)

status =

 StatusCode enumeration

1 Functions

1-40

 OK

title = myReq.Title

title =

 'Requirement 1'

Edit the requirement title and commit the change to the service provider.

myReq.Title = 'My New Requirement Title';
status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

Open the requirement resource in the system browser by using the show function.

show(myReq)

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

Output Arguments
status — Commit success status
matlab.net.http.StatusCode

Commit success status, returned as a matlab.net.http.StatusCode object.

 commit

1-41

Tips
• When you use commit, there are two common causes of error:

1 You do not have the required permissions from the system administrator to commit.
2 The RDF/XML data for a locally cached resource object is either missing elements required by

the service provider or is otherwise incorrectly configured.

The returned error message contains information about why the commit operation failed. If the
error is due to incorrectly configured RDF/XML data, use getRDF to see if the locally cached
resource object contains the elements and attributes that are required by the service provider.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | view | fetch | remove

External Websites
RDF 1.1 XML Syntax

1 Functions

1-42

https://www.w3.org/TR/rdf-syntax-grammar/

slreq.convertAnnotation
Convert annotations to requirement objects

Syntax
myReq = slreq.convertAnnotation(myAnnotation,myDestination)
myReq = slreq.convertAnnotation(myAnnotation,myDestination,Name,Value)

Description
myReq = slreq.convertAnnotation(myAnnotation,myDestination) converts a Simulink or
a Stateflow® annotation myAnnotation into a requirement myReq and stores it in a destination
entity myDestination.

myReq = slreq.convertAnnotation(myAnnotation,myDestination,Name,Value) converts
a Simulink or a Stateflow annotation myAnnotation into a requirement myReq and stores it in a
destination entity myDestination using additional options specified by one or more Name, Value
pair arguments.

Examples
Convert Simulink Annotation to Requirement

% Find all annotations in a Simulink model
allAnnotations = find_system('controller_Model', 'FindAll', ...
'on', 'type', 'annotation');

% Create a new requirement set
newReqSet = slreq.new('myNewReqSet');

% Convert one annotation into a requirement newReq
% and add it to newReqSet
newReq = slreq.convertAnnotation(allAnnotations(1), ...
newReqSet);

Input Arguments
myAnnotation — Simulink or Stateflow annotation
Simulink.Annotation object

The annotation to be converted, specified as a Simulink.Annotation object.

myDestination — Converted annotation destination entity
slreq.Requirement object | slreq.ReqSet object

The destination entity for the converted annotation, specified either as an slreq.Requirement or
as an slreq.ReqSet object.

 slreq.convertAnnotation

1-43

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'CreateLinks', true

CreateLinks — Option to create links
true (default) | false

Option to create links when converting annotations, specified as a Boolean value.

KeepAnnotation — Option to retain annotation
false (default) | true

Option to retain the annotation after conversion, specified as a Boolean value.

IgnoreCallback — Option to force annotation conversion
false (default) | true

Option to specify annotation conversion even if a callback function is specified in the annotation,
specified as a Boolean value.

ShowMarkup — Option to display requirements markup
true (default) | false

Option to display the Requirement markup after annotation conversion, specified as a Boolean value.

Output Arguments
myReq — Requirement
slreq.Requirement object

The converted annotation, returned as an slreq.Requirement object.

Version History
Introduced in R2018a

See Also
slreq.Requirement | slreq.ReqSet

1 Functions

1-44

create
Package: oslc.core

Create resource in OSLC service provider

Syntax
myResource = create(myCreationFactory,resource)

Description
myResource = create(myCreationFactory,resource) submits a creation request to the Open
Services for Lifecycle Collaboration (OSLC) service provider associated with the creation factory
myCreationFactory for the resource object resource.

Examples

Submit a Creation Request for a User-Created Resource

This example shows how to submit a creation request for a user-created resource with a configured
OSLC client.

After you have created and configured an OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a
creation factory for the requirement resource type.

myCreationFactory = getCreationFactory(myClient,'Requirement');

Create a new requirement resource by creating an instance of the oslc.rm.Requirement class.

myReq = oslc.rm.Requirement

myReq =
 Requirement with properties:

 ResourceUrl: ''
 Dirty: 0
 IsFetched: 0
 Title: ''
 Identifier: ''

Add the dcterms:title property to the requirement and set the value.

addTextProperty(myReq,'dcterms:title','My New Requirement');

Submit a creation request to the service provider for the requirement object.

newReq = create(myCreationFactory,myReq)

newReq =
 Requirement with properties:

 create

1-45

 ResourceUrl: 'https://localhost:9443/rm/resources/_oJNtgWrqEeup0...'
 Dirty: 1
 IsFetched: 0
 Title: ''
 Identifier: ''

Retrieve the full resource data for the requirement resource from the service provider. Open the
requirement resource in the system browser with the show function..

status = fetch(newReq,myClient)

status =

 StatusCode enumeration

 OK

show(newReq)

Input Arguments
myCreationFactory — Resource creation factory
oslc.core.CreationFactory object

OSLC resource creation factory, specified as an oslc.core.CreationFactory object.

resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

Output Arguments
myResource — New OSLC resource
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

New OSLC resource object, returned as one of these objects:

• oslc.cm.ChangeRequest
• oslc.qm.TestCase

1 Functions

1-46

• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

Tips
• For information about OSLC resource properties, see these pages on the OSLC website:

• RM Resource Definitions
• QM Resource Definitions
• CM Resource Definitions

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | createChangeRequest | createRequirement |
createTestCase | addResourceProperty | addTextProperty | getResourceProperty |
removeResourceProperty | getProperty | setResourceUrl | setProperty

 create

1-47

https://archive.open-services.net/bin/view/Main/RmSpecificationV2.html#RM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/CmSpecificationV2.html#CM_Resource_Definitions

slreq.modeling.create
Create new model with Requirements Table block

Syntax
reqTable = slreq.modeling.create
reqTable = slreq.modeling.create(model)

Description
reqTable = slreq.modeling.create creates an untitled model that contains a Requirements
Table block.

reqTable = slreq.modeling.create(model) creates a model with the name specified by
model.

Examples

Create a New Model that Contains a Requirements Table Block

Create a new model that contains a Requirements Table block.

reqTable = slreq.modeling.create;

The function returns reqTable as a RequirementsTable object.

Create a Model With a Custom Name

Create a new model named myModel that contains a Requirements Table block.

reqTable = slreq.modeling.create("myModel");

The function returns reqTable as a RequirementsTable object.

Input Arguments
model — Model name
string scalar | character vector

Model name, specified as a string scalar or character vector.
Data Types: char | string

Output Arguments
reqTable — Requirements Table block
RequirementsTable object

1 Functions

1-48

Requirements Table block, returned as a RequirementsTable object.

Version History
Introduced in R2022a

See Also
Objects
RequirementsTable

Functions
slreq.modeling.find

Topics
“Use a Requirements Table Block to Create Formal Requirements”

 slreq.modeling.create

1-49

createChangeRequest
Package: oslc.core

Create change request in OSLC service provider

Syntax
myChangeRequest = createChangeRequest(myCreationFactory,title)

Description
myChangeRequest = createChangeRequest(myCreationFactory,title) creates a change
request with the specified title by using the creation factory myCreationFactory in the Open
Services for Lifecycle Collaboration (OSLC) service provider.

Examples

Create a New Change Request

This example shows how to submit a creation request for a new change request resource with a
configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Change Management Domain” on page 2-5, create a creation
factory for the change request resource type.

myCreationFactory = getCreationFactory(myClient,'ChangeRequest');

Use the creation factory to create a new change request resource with the title My New Change
Request. Retrieve the full resource data from the service provider for the change request resource
and inspect the resource.

newCR = createChangeRequest(myCreationFactory,'My New Change Request');
fetch(newCR,myClient);
newCR

newCR =

 ChangeRequest with properties:

 ResourceUrl: 'https://localhost:9443/ccm/resource/itemName/...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Change Request'
 Identifier: '204'

Open the change request resource in the system browser by using the show function.

1 Functions

1-50

show(newCR)

Input Arguments
myCreationFactory — Resource creation factory
oslc.core.CreationFactory object

OSLC resource creation factory, specified as an oslc.core.CreationFactory object.

title — Change request title
character array

Change request title, specified as a character array.

Output Arguments
myChangeRequest — Change request resource
oslc.cm.ChangeRequest object

OSLC change request resource, returned as an oslc.cm.ChangeRequest object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.cm.ChangeRequest | oslc.core.CreationFactory |
createRequirement | createTestCase

 createChangeRequest

1-51

slreq.createLink
Create traceable links

Syntax
myLink = slreq.createLink(src, dest)

Description
myLink = slreq.createLink(src, dest) creates an slreq.Link object myLink that serves as
a link between the source artifact src and the destination artifact dest.

Examples

Create a Link

This example shows how to create a link.

Create a link between the currently selected Simulink block and a requirement req.

link1 = slreq.createLink(gcb,req)

link1 =

 Link with properties:

 Type: 'Implement'
 Description: 'Plant Specs'
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 02-Sep-2017 15:49:28
 CreatedBy: 'Jane Doe'
 ModifiedOn: 21-Oct-2017 11:34:12
 ModifiedBy: 'John Doe'
 Comments: [0×0 struct]

Input Arguments
src — Link source artifact
structure

The link source artifact, specified as a MATLAB structure.

dest — Link destination artifact
structure

The link destination artifact, specified as a MATLAB structure.

1 Functions

1-52

Output Arguments
myLink — Link artifact
slreq.Link object

The link between src and dest, specified as an slreq.Link object.

Version History
Introduced in R2018a

See Also
slreq.Link | slreq.LinkSet

 slreq.createLink

1-53

createRequirement
Package: oslc.core

Create requirement in OSLC service provider

Syntax
myRequirement = createRequirement(myCreationFactory,title)

Description
myRequirement = createRequirement(myCreationFactory,title) creates a requirement
with the specified title by using the creation factory myCreationFactory in the Open Services for
Lifecycle Collaboration (OSLC) service provider.

Examples

Create a New Requirement

This example shows how to submit a creation request for a new requirement resource with a
configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a
creation factory for the requirement resource type.

myCreationFactory = getCreationFactory(myClient,'Requirement');

Use the creation factory to create a new requirement resource with the title My New Requirement.
Retrieve the full resource data from the service provider for the requirement resource and inspect
the resource.

newReq = createRequirement(myCreationFactory,'My New Requirement');
fetch(newReq,myClient);
newReq

newReq =

 Requirement with properties:

 ResourceUrl: 'https://localhost:9443/rm/resources/_72lxMWJREeup0...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Requirement'
 Identifier: '1806'

Open the requirement resource in the system browser by using the show function.

1 Functions

1-54

show(newReq)

Input Arguments
myCreationFactory — Resource creation factory
oslc.core.CreationFactory object

OSLC resource creation factory, specified as an oslc.core.CreationFactory object.

title — Requirement title
character array

Requirement title, specified as a character array.

Output Arguments
myRequirement — Requirement resource
oslc.rm.Requirement object

OSLC requirement resource, returned as an oslc.rm.Requirement object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.core.CreationFactory |
createChangeRequest | createTestCase | createRequirementCollection

 createRequirement

1-55

createRequirementCollection
Package: oslc.core

Create requirement collection in OSLC service provider

Syntax
myReqCol = createRequirementCollection(myCreationFactory,title)

Description
myReqCol = createRequirementCollection(myCreationFactory,title) creates a
requirement collection with the specified title by using the creation factory myCreationFactory in
the Open Services for Lifecycle Collaboration (OSLC) service provider.

Examples

Create a New Requirement Collection

This example shows how to submit a creation request for a new requirement collection resource with
a configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a
creation factory for the requirement collection resource type.

myCreationFactory = getCreationFactory(myClient,...
'RequirementCollection');

Use the creation factory to create a requirement collection resource with the title My New
Requirement Collection. Retrieve the full resource data from the service provider for the
requirement collection resource and inspect the resource.

newReqCollection = createRequirementCollection(myCreationFactory,...
'My New Requirement Collection')
fetch(newReqCollection,myClient);
newReqCollection

newReqCollection =

 RequirementCollection with properties:
 ResourceUrl: 'https://localhost:9443/rm/resources/_72lxMWJREeup0r..'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Requirement Collection'
 Identifier: '1808'

Open the requirement collection resource in the system browser by using the show function.

1 Functions

1-56

show(newReqCollection)

Input Arguments
myCreationFactory — Resource creation factory
oslc.core.CreationFactory object

OSLC resource creation factory, specified as an oslc.core.CreationFactory object.

title — Requirement collection title
character array

Requirement collection title, specified as a character array.

Output Arguments
myReqCol — Requirement collection resource
oslc.rm.RequirementCollection object

OSLC requirement collection resource, returned as an oslc.rm.RequirementCollection object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | oslc.rm.RequirementCollection |
createChangeRequest | createRequirement | createTestCase

 createRequirementCollection

1-57

createTestCase
Package: oslc.core

Create test case in OSLC service provider

Syntax
myTestCase = createTestCase(myCreationFactory,title)

Description
myTestCase = createTestCase(myCreationFactory,title) creates a test case with the
specified title created using the creation factory myCreationFactory in the Open Services for
Lifecycle Collaboration (OSLC) service provider.

Examples

Create a New Test Case

This example shows how to submit a creation request for a new test case resource with a configured
OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a creation
factory for the test case resource type.

myCreationFactory = getCreationFactory(myClient,'TestCase');

Use the creation factory to create a test case resource with the title My New Test Case. Retrieve
the full resource data from the service provider for the test case resource and inspect the resource.

newTestCase = createTestCase(myCreationFactory,'My New Test Case');
fetch(newTestCase,myClient);
newTestCase

newTestCase =
 TestCase with properties:

 ResourceUrl: 'https://localhost:9443/qm/resource/itemName/_a9aS...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Test Case'
 Identifier: '301'

Open the test case resource in the system browser by using the show function.

1 Functions

1-58

show(newTestCase)

Input Arguments
myCreationFactory — Resource creation factory
oslc.core.CreationFactory object

OSLC resource creation factory, specified as an oslc.core.CreationFactory object.

title — Test case title
character array

Test case title, specified as a character array.

Output Arguments
myTestCase — Test case resource
oslc.qm.TestCase object

OSLC test case resource, returned as an oslc.qm.TestCase object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | oslc.qm.TestCase | createChangeRequest |
createRequirement | createTestExecutionRecord | createTestPlan | createTestResult |
createTestScript

 createTestCase

1-59

createTestExecutionRecord
Package: oslc.core

Create test execution record in OSLC service provider

Syntax
myTER = createTestExecutionRecord(myCreationFactory,title,testURL)

Description
myTER = createTestExecutionRecord(myCreationFactory,title,testURL) creates a test
execution record with the specified title for the test case specified by the resource URL testURL. The
resource is created by creation factory myCreationFactory in the Open Services for Lifecycle
Collaboration (OSLC) service provider..

Examples

Create a New Test Execution Record

This example shows how to submit a creation request for a new test execution record resource with a
configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a creation
factory for the test execution record resource type.

myCreationFactory = getCreationFactory(myClient,'TestExecutionRecord');

Use the creation factory to create a test execution record resource with the title My New Test
Execution Record and associate it with the test case resource URL testURL from a test case. For
more information about querying the service provider for test cases, see “Edit a Test Case and
Commit Changes” on page 2-21. Retrieve full resource data from the service provider for the test
execution record resource and inspect the resource.

newTestER = createTestExecutionRecord(myCreationFactory, ...
 'My New Test Execution Record',testURL);
fetch(newTestCase,myClient);
newTestER

newTestER =
 TestExecutionRecord with properties:

 ResourceUrl: 'https://localhost:9443/qm/oslc_qm/resources/CfkIoW...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Test Execution Record'
 Identifier: '301'

Open the test execution record resource in the system browser by using the show function.

1 Functions

1-60

show(newTestER)

Input Arguments
myCreationFactory — Resource creation factory
oslc.core.CreationFactory object

OSLC resource creation factory, specified as an oslc.core.CreationFactory object.

title — Test execution record title
character array

Test execution record title, specified as a character array.

testURL — Test case URL
character array

Resource URL of the test case to associate with the test execution record, specified as a character
array.

Output Arguments
myTER — Test execution record resource
oslc.qm.TestExecutionRecord object

OSLC test execution record resource, returned as an oslc.qm.TestExecutionRecord object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | oslc.qm.TestExecutionRecord |
createChangeRequest | createRequirement | createTestCase | createTestPlan |
createTestResult | createTestScript

 createTestExecutionRecord

1-61

createTestPlan
Package: oslc.core

Create test plan in OSLC service provider

Syntax
myTestPlan = createTestPlan(myCreationFactory,title)

Description
myTestPlan = createTestPlan(myCreationFactory,title) creates a test plan with the
specified title by using the creation factory myCreationFactory in the Open Services for Lifecycle
Collaboration (OSLC) service provider.

Examples

Create a New Test Plan

This example shows how to submit a creation request for a new test plan resource with a configured
OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a creation
factory for the test plan resource type.

myCreationFactory = getCreationFactory(myClient,'TestPlan');

Use the creation factory to create a test plan resource with the title My New Test Plan. Retrieve
the full resource data from the service provider for the test plan resource and inspect the resource.

newTestPlan = createTestPlan(myCreationFactory,'My New Test Plan');
fetch(newTestPlan,myClient);
newTestPlan

newTestPlan =
 TestPlan with properties:

 ResourceUrl: 'https://localhost:9443/qm/resource/itemName/_f56s...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Test Plan'
 Identifier: '301'

Open the test plan resource in the system browser by using the show function.

1 Functions

1-62

show(newTestPlan)

Input Arguments
myCreationFactory — Resource creation factory
oslc.core.CreationFactory object

OSLC resource creation factory, specified as an oslc.core.CreationFactory object.

title — Test plan title
character array

Test plan title, specified as a character array.

Output Arguments
myTestPlan — Test plan resource
oslc.qm.TestPlan object

OSLC test plan resource, returned as an oslc.qm.TestPlan object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | oslc.qm.TestPlan | createChangeRequest |
createRequirement | createTestExecutionRecord | createTestCase | createTestResult |
createTestScript

 createTestPlan

1-63

createTestResult
Package: oslc.core

Create test result in OSLC service provider

Syntax
myTR = createTestResult(myCF,title,executionURL,testURL,status)

Description
myTR = createTestResult(myCF,title,executionURL,testURL,status) creates a test
result with the specified title for the test execution record and test case specified by the resource
URLs executionURL and testURL, respectively. The resource result status is specified by status.
The resource is created by using the creation factory myCF in the Open Services for Lifecycle
Collaboration (OSLC) service provider.

Examples

Create a New Test Result

This example shows how to submit a creation request for a new test result resource with a configured
OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a creation
factory for the test result resource type.

myCreationFactory = getCreationFactory(myClient,'TestResult');

Use the creation factory to create a test result resource with the title My New Test Result and
associate it with the test case resource URL specified by testURL and the test execution record
resource URL specified by executionURL. Set the test result status to Unverified. For more
information about querying the service provider for test cases and execution records, see “Edit a Test
Case and Commit Changes” on page 2-21 and “Edit a Test Execution Record and Commit Changes”
on page 2-25. Retrieve the full resource data from the service provider for the test result resource
and inspect the resource.

newTestResult = createTestResult(myCreationFactory, ...
 'My New Test Result',testURL,executionURL,'Unverified');
fetch(newTestCase,myClient);
newTestResult

newTestResult =
 TestResult with properties:

 ResourceUrl: 'https://localhost:9443/qm/oslc_qm/resources/CdffuW...'
 Dirty: 0
 IsFetched: 1

1 Functions

1-64

 Title: 'My New Test Result'
 Identifier: '1456'

Open the test result resource in the system browser by using the show function.

show(newTestResult)

Input Arguments
myCF — Resource creation factory
oslc.core.CreationFactory object

OSLC resource creation factory, specified as an oslc.core.CreationFactory object.

title — Test result title
character array

Test result title, specified as a character array.

executionURL — Test execution record resource URL
character array

Resource URL of the test execution record to associate with the test result, specified as a character
array.

testURL — Test case resource URL
character array

Resource URL of the test case to associate with the test result, specified as a character array.

status — Test result status
character array

Test result status, specified as a character array.

Output Arguments
myTR — Test result resource
oslc.qm.TestResult object

OSLC test result resource, returned as an oslc.qm.TestResult object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | oslc.qm.TestResult | createChangeRequest
| createRequirement | createTestExecutionRecord | createTestCase | createTestPlan |
createTestScript

 createTestResult

1-65

createTestScript
Package: oslc.core

Create test script in OSLC service provider

Syntax
myTestScript = createTestScript(myCreationFactory,title)

Description
myTestScript = createTestScript(myCreationFactory,title) creates a test script with
the specified title by using the creation factory myCreationFactory in the Open Services for
Lifecycle Collaboration (OSLC) service provider.

Examples

Create a New Test Script

This example shows how to submit a creation request for a new test script resource with a configured
OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a creation
factory for the test script resource type.

myCreationFactory = getCreationFactory(myClient,'TestScript');

Use the creation factory to create a test script resource with the creation factory with the title My
New Test Script. Retrieve the full resource data from the service provider for the test script
resource and inspect the resource.

newTestScript = createTestScript(myCreationFactory, ...
 'My New Test Script');
fetch(newTestScript,myClient);
newTestScript

newTestScript =
 TestScript with properties:

 ResourceUrl: 'https://localhost:9443/qm/resource/itemName/_b19w2...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Test Script'
 Identifier: '498'

Open the test script resource in the system browser by using the show function.

1 Functions

1-66

show(newTestScript)

Input Arguments
myCreationFactory — Resource creation factory
oslc.core.CreationFactory object

OSLC resource creation factory, specified as an oslc.core.CreationFactory object.

title — Test script title
character array

Test script title, specified as a character array.

Output Arguments
myTestScript — Test script resource
oslc.qm.TestScript object

OSLC test script resource, returned as an oslc.qm.TestScript object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | oslc.qm.TestScript | createChangeRequest
| createRequirement | createTestExecutionRecord | createTestCase | createTestPlan |
createTestResult

 createTestScript

1-67

slreq.createTextRange
Package: slreq

Create line ranges

Syntax
lr = slreq.createTextRange(fileName,lines)
lr = slreq.createTextRange(fileName,blockSID,lines)

Description
lr = slreq.createTextRange(fileName,lines) creates a line range associated with the lines
of code, lines, in the file specified by fileName.

lr = slreq.createTextRange(fileName,blockSID,lines) creates a line range in the
MATLAB Function block specified by blockSID.

Examples

Create Line Ranges and Link to Requirement

This example shows how to create an slreq.TextRange object and link it to a requirement.

Create an slreq.TextRange object that corresponds to line numbers 1 and 2 in the myAdd function.

tr = slreq.createTextRange("myAdd.m",[1 2]);

View the slreq.TextRange object in the MATLAB® Editor.

show(tr);

Load the myAddRequirements requirement set.

rs = slreq.load("myAddRequirements");

Get a handle to the requirement with the summary Add u and v.

req = find(rs,Summary="Add u and v");

Create a link from the slreq.TextRange object to the requirement.

myLink = slreq.createLink(tr,req);

Create Line Ranges in MATLAB Function Blocks

This example shows how to create slreq.TextRange objects in MATLAB Function blocks and link
the objects to requirements.

1 Functions

1-68

Open the myAddModel Simulink® model.

model = "myAddModel";
open_system(model);

Get the SID of the MATLAB Function block.

block = "myAddModel/MATLAB Function";
SID = get_param(block,"SID");

Create an slreq.TextRange object that corresponds to line number 2 in the myAdd MATLAB
Function block.

tr = slreq.createTextRange(model,SID,2);

Load the myAddRequirements requirement set.

rs = slreq.load("myAddRequirements");

Get a handle to the requirement with the summary Add u and v.

req = find(rs,Summary="Add u and v");

Create a link from the slreq.TextRange object to the requirement.

myLink = slreq.createLink(tr,req);

Input Arguments
fileName — File name
string scalar | character vector

Name of the file containing the lines of code, specified as a string scalar or character vector.
Example: "myAdd.m","vdp.slx"

lines — Start and end line numbers
scalar double | double array

Start and end line numbers for the line range, specified as a double array of the form [start end]
or a scalar double.
Example: [1 4], 1

blockSID — MATLAB Function block SID
string scalar | character vector

MATLAB Function block SID, specified as a string scalar or character vector.
Example: "30"

Output Arguments
lr — Line range
slreq.TextRange object

Line range, returned as an slreq.TextRange object.

 slreq.createTextRange

1-69

Tips
• You can also use slreq.LinkSet.createTextRange to create line ranges.

Version History
Introduced in R2022b

See Also
slreq.TextRange | slreq.getTextRange | slreq.LinkSet.createTextRange

Topics
“Requirements Traceability for MATLAB Code”

1 Functions

1-70

slreq.dngConfigure
Configure IBM DOORS Next session in MATLAB

Syntax
slreq.dngConfigure

Description
slreq.dngConfigure establishes a connection between your MATLAB session and an IBM DOORS
Next server. The function prompts you to enter your IBM DOORS Next server URL, port number
information, and login credentials, and to select a project configuration.

Examples

Configure a MATLAB Session to Work With IBM DOORS Next

This example shows how to establish a connection between MATLAB and IBM DOORS Next.

Enter slreq.dngConfigure at the MATLAB command prompt. In the DOORS Server dialog box,
provide the DOORS Next server address, port number, and service root. In the Server Login Name
and Server Login Password dialog boxes, enter your login credentials. In the DOORS Project dialog
box, select the project to work with and, if applicable, select the configuration context. Select
configuration stream or changeset lists the recently used configurations. If your configuration
context does not appear, select <more> to query the full list from the server.

slreq.dngConfigure;

Verifying server address...
Verifying server login username...
When prompted, enter your DOORS Next password
Select Project/Stream/Changeset that you will be working with

Tips
• If the function returns an error and does not open any dialog boxes, at the MATLAB command

prompt, enter:

connector.securePort

If connector.securePort returns a value that is not 31515, close all open instances of
MATLAB and open one instance.

• After you select your DOORS project and click OK, MATLAB tests the connection to DOORS Next
in your browser. If the connection is successful, the MATLAB Connector Test dialog box appears
with a confirmation message. If the dialog does not appear, check that MATLAB is running on the
corresponding HTTPS port. At the MATLAB command line, enter:

connector.securePort

 slreq.dngConfigure

1-71

If the output is not 31515, close all open instances of MATLAB and open one instance. If the
dialog box still does not appear, check for security issues in your browser. If the browser indicates
that the connection is unsecured or not private, and you trust the connection, click Advanced >
Proceed to localhost (unsafe) to complete the connection.

• If you plan to create direct links to requirements in IBM DOORS Next, leave the test connection
browser window open, because this instance of the web browser is authenticated to communicate
with MATLAB. Use this authenticated instance of the web browser to select requirements in your
IBM DOORS Next project and create direct links. You can re-open the test connection browser
window by copying and pasting this address in the browser address bar: https://
localhost:31515/matlab/oslc/inboundTest.

• If your network requires advanced authentication that the default authentication process does not
support, you can use rmipref with the 'LoginProvider' name-value argument to register a
custom authentication callback function before using slreq.dngConfigure.

Note If you configure a session by using a custom authentication callback function, you can only
create direct links to requirements in IBM DOORS Next. For more information, see “Directly
Linking DOORS Next Requirements”. You cannot import requirements as described in “Import
Requirements from IBM DOORS Next”.

Version History
Introduced in R2020a

See Also
slreq.dngCountLinks | slreq.dngGetProjectConfig | slreq.dngGetUsedConfig |
slreq.dngUpdateConfig

Topics
“Link and Trace Requirements with IBM DOORS Next”
“Import Requirements from IBM DOORS Next”

1 Functions

1-72

slreq.dngCountLinks
Get number of links to IBM DOORS Next artifacts

Syntax
count = slreq.dngCountLinks(sourceArtifact)
count = slreq.dngCountLinks(sourceArtifact, config)

Description
count = slreq.dngCountLinks(sourceArtifact) returns the total number of links from
sourceArtifact to IBM DOORS Next artifacts.

count = slreq.dngCountLinks(sourceArtifact, config) returns the total number of links
from sourceArtifact to the specified IBM DOORS Next configuration config.

Input Arguments
sourceArtifact — Link source artifact name
character vector | string | slreq.LinkSet object

The Simulink link source artifact, specified as a character vector or a string or as an slreq.LinkSet
object.

config — Target project configuration identifier
string | character vector | structure

IBM DOORS Next Project configuration identifier. The configuration identifier can be the name, ID, or
the configuration structure. The name and ID can be specified as a character vector or string. The
configuration structure can be specified as a MATLAB structure.

Output Arguments
count — Link count
double

The total number of links from sourceArtifact to the IBM DOORS Next Project, returned as a
double.

Version History
Introduced in R2018b

See Also

 slreq.dngCountLinks

1-73

slreq.dngGetProjectConfig
Query known configurations from IBM DOORS Next server

Syntax
configs = slreq.dngGetProjectConfig()
configs = slreq.dngGetProjectConfig('project', ProjectName)
configs = slreq.dngGetProjectConfig('type', 'stream')
configs = slreq.dngGetProjectConfig('type', 'changeset')
configs = slreq.dngGetProjectConfig('name', ConfigName)
configs = slreq.dngGetProjectConfig('id', ConfigID)

Description
configs = slreq.dngGetProjectConfig() returns an array of structures representing all
known configurations for the current IBM DOORS Next Project.

configs = slreq.dngGetProjectConfig('project', ProjectName) returns a structure
representing the configuration for the IBM DOORS Next Project specified by ProjectName and
switches the MATLAB session to ProjectName.

configs = slreq.dngGetProjectConfig('type', 'stream') returns a structure
representing the known streams for the current IBM DOORS Next Project.

configs = slreq.dngGetProjectConfig('type', 'changeset') returns a structure
representing the known changesets for the current IBM DOORS Next Project.

configs = slreq.dngGetProjectConfig('name', ConfigName) returns a structure
representing the configuration for the stream or changeset specified by ConfigName.

configs = slreq.dngGetProjectConfig('id', ConfigID) returns a structure representing
the configuration for the stream or changeset specified by ConfigID.

Input Arguments
ProjectName — Requirements project
character vector | string

IBM DOORS Next Project.

ConfigName — Stream or changeset name
character vector | string

The name of the IBM DOORS Next Project stream or changeset specified as a character vector or as a
string.

ConfigID — Stream or changeset ID
character vector | string

1 Functions

1-74

The ID of the IBM DOORS Next Project stream or changeset specified as a character vector or as a
string.

Output Arguments
configs — Server configurations
structure | array of structures

IBM DOORS Next Project configuration, returned as a structure or an array of structures containing
these fields.

id — Configuration ID
character vector

IBM DOORS Next Project configuration ID, returned as a character vector.

name — Configuration name
character vector

IBM DOORS Next Project configuration name, returned as a character vector.

type — Configuration type
character vector

IBM DOORS Next Project configuration type, returned as a character vector.

url — Configuration URL
character vector

IBM DOORS Next Project configuration Uniform Resource Locator (URL), returned as a character
vector.

Version History
Introduced in R2018b

See Also

 slreq.dngGetProjectConfig

1-75

slreq.dngGetUsedConfig
Query used IBM DOORS Next configurations from MATLAB/Simulink artifacts

Syntax
configs = slreq.dngGetUsedConfig()
configs = slreq.dngGetUsedConfig(sourceArtifact)

Description
configs = slreq.dngGetUsedConfig() returns allIBM DOORS Next configurations linked from
loaded Simulink artifacts.

configs = slreq.dngGetUsedConfig(sourceArtifact) returns all IBM DOORS Next
configurations linked from a given Simulink source, sourceArtifact.

Input Arguments
sourceArtifact — Link source artifact name
slreq.LinkSet object | character vector | string

The Simulink link source artifact, specified as a character vector or a string or as an slreq.LinkSet
object.

Output Arguments
configs — Server configurations
array of structures

IBM DOORS Next Project configuration, returned as an array of structures containing these fields.

id — Configuration ID
character vector

IBM DOORS Next Project configuration ID, returned as a character vector.

name — Configuration name
character vector

IBM DOORS Next Project configuration name, returned as a character vector.

type — Configuration type
character vector

IBM DOORS Next Project configuration type, returned as a character vector.

url — Configuration URL
character vector

1 Functions

1-76

IBM DOORS Next Project configuration Uniform Resource Locator (URL), returned as a character
vector.

Version History
Introduced in R2018b

See Also

 slreq.dngGetUsedConfig

1-77

slreq.dngUpdateConfig
Update links to IBM DOORS Next configuration

Syntax
count = slreq.dngUpdateConfig(sourceArtifact, oldConfig, newConfig)

Description
count = slreq.dngUpdateConfig(sourceArtifact, oldConfig, newConfig) updates the
links to oldConfig originating from sourceArtifact to point to the same requirements in IBM
DOORS Next under a different configuration, newConfig.

Input Arguments
sourceArtifact — Link source artifact name
slreq.LinkSet object | character vector | string

The Simulink link source artifact, specified as a character vector or a string or as an slreq.LinkSet
object.

oldConfig — Stored project configuration name or ID
character vector

The original IBM DOORS Next Project configuration name or ID, specified as a character vector.

newConfig — New project configuration name or ID
character vector

The new IBM DOORS Next Project configuration name or ID, specified as a character vector.

Output Arguments
count — Link count
double

The total number of updated links from sourceArtifact to the IBM DOORS Next Project, returned
as a double.

Version History
Introduced in R2018a

See Also

1 Functions

1-78

slreq.editor
Open Requirements Editor

Syntax
slreq.editor

Description
slreq.editor opens the Requirements Editor user interface (UI) dialog box.

Tips
• Open the Requirements Manager app in a Simulink model with

slreq.openRequirementsManager. You can use the Requirements Manager to edit and link
requirements without leaving the Simulink model.

Version History
Introduced in R2018a

See Also
slreq.ReqSet | Requirements Editor | slreq.openRequirementsManager

 slreq.editor

1-79

slreq.exportViewSettings
Export view settings

Syntax
slreq.exportViewSettings(viewSettingsFile)

Description
slreq.exportViewSettings(viewSettingsFile) exports Requirements Toolbox™ view settings
to a MAT-file, viewSettingsFile.

Input Arguments
viewSettingsFile — View settings file
character vector

Requirements Toolbox view settings file name, specified as a character vector.

Version History
Introduced in R2018b

See Also
slreq.importViewSettings | slreq.resetViewSettings

1 Functions

1-80

fetch
Package: oslc.rm

Retrieve full resource data from OSLC service provider

Syntax
status = fetch(resource,myClient)

Description
status = fetch(resource,myClient) retrieves the XML/RDF data from the ResourceUrl
associated with resource from the service provider associated with myClient. The function stores
the XML/RDF data in the Open Services for Lifecycle Collaboration (OSLC) resource object
resource and returns the retrieval success status. For more information about RDF/XML, see RDF
1.1 XML Syntax on the World Wide Web Consortium website.

Examples

Edit a Requirement and Commit Changes

This example shows how to submit a query request for requirement resources with a configured
OSLC client, edit an existing requirement resource, and commit the changes to the service provider.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type.

myQueryCapability = getQueryService(myClient,'Requirement');

Submit a query request to the service provider for the available requirement resources.

reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign a requirement resource to the variable myReq. Retrieve the full resource data from the service
provider for the requirement resource. Examine the Title property.

myReq = reqs(1);
status = fetch(myReq,myClient)

status =

 fetch

1-81

https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/

 StatusCode enumeration

 OK

title = myReq.Title

title =

 'Requirement 1'

Edit the requirement title and commit the change to the service provider.

myReq.Title = 'My New Requirement Title';
status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

Open the requirement resource in the system browser by using the show function.

show(myReq)

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

Output Arguments
status — Retrieval success status
matlab.net.http.StatusCode

Retrieval success status, returned as a matlab.net.http.StatusCode object.

1 Functions

1-82

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | remove | show | commit

External Websites
RDF 1.1 XML Syntax

 fetch

1-83

https://www.w3.org/TR/rdf-syntax-grammar/

slreq.find
Find requirement, reference, and link set artifacts

Syntax
myReqTbxObjects = slreq.find("Type",ObjectType)
myReqTbxObjects = slreq.find("Type",ObjectType,Name,Value)
myReqTbxObjects = slreq.find("Type",ObjectType,PropertyName,PropertyValue)
myReqTbxObjects = slreq.find("Type",ObjectType,PropertyOperator,
PropertyValue)
myReqTbxObjects = slreq.find("Type",ObjectType, ___ ,"-or", ___)

Description
myReqTbxObjects = slreq.find("Type",ObjectType) returns the loaded Requirements
Toolbox objects of the type specified by ObjectType.

myReqTbxObjects = slreq.find("Type",ObjectType,Name,Value) returns the loaded
Requirements Toolbox objects with the requirement type or link type specified by Name and Value.

myReqTbxObjects = slreq.find("Type",ObjectType,PropertyName,PropertyValue)
returns the loaded Requirements Toolbox objects with the property value equal to PropertyValue
for the property specified by PropertyName. The property can be a built-in property, custom
attribute, or stereotype property.

myReqTbxObjects = slreq.find("Type",ObjectType,PropertyOperator,
PropertyValue) returns the loaded Requirements Toolbox objects whose property value,
PropertyValue, meets the relational criteria for the property specified by PropertyOperator.

myReqTbxObjects = slreq.find("Type",ObjectType, ___ ,"-or", ___) returns the loaded
Requirements Toolbox objects that match at least one of the criteria.

Examples

Find Requirements

This example shows how to find requirements.

Load the requirement set myAddRequirements.

rs = slreq.load("myAddRequirements");

Find the loaded requirements.

reqs = slreq.find("Type","Requirement")

reqs=1×4 object
 1×4 Requirement array with properties:

 Type

1 Functions

1-84

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 IndexEnabled
 IndexNumber
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

Find Functional Requirements

This example shows how to find functional requirements.

Load the requirement set myAddRequirements.

rs = slreq.load("myAddRequirements");

Find the loaded functional requirements.

reqs = slreq.find("Type","Requirement","ReqType","Functional")

reqs=1×4 object
 1×4 Requirement array with properties:

 Type
 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 IndexEnabled
 IndexNumber
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

 slreq.find

1-85

Find Requirements by Property Value

This example shows how to find requirements by property value.

Load the requirement set myAddRequirements.

rs = slreq.load("myAddRequirements");

Find the loaded requirement with Index set to 2.

req = slreq.find("Type","Requirement","Index",2);

Find Requirements by Property Value by Using Relational Operators

This example shows how to use relational operators to find requirements by property value.

Load the requirement set myAddRequirements.

rs = slreq.load("myAddRequirements");

Find the loaded requirements with Index greater than 2.

reqs = slreq.find("Type","Requirement","Index:>",2)

reqs=1×2 object
 1×2 Requirement array with properties:

 Type
 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 IndexEnabled
 IndexNumber
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

Find Requirements by Property Value with Multiple Criteria

This example shows how to use multiple criteria find requirements by property value.

Load the requirement set myAddRequirements.

rs = slreq.load("myAddRequirements");

1 Functions

1-86

Find the loaded requirement with Index set to 2 or 4.

req = slreq.find("Type","Requirement","Index",2,"-or","Index",4)

req=1×2 object
 1×2 Requirement array with properties:

 Type
 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 IndexEnabled
 IndexNumber
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

Input Arguments
ObjectType — Requirements Toolbox object type
"ReqSet" | "Requirement" | "Reference" | ...

Requirements Toolbox object type, specified as:

• "ReqSet"
• "Requirement"
• "Reference"
• "Justification"
• "LinkSet"
• "Link"

PropertyName — Requirements Toolbox object property name
string scalar | character vector

Requirements Toolbox object property name, specified as a string scalar or character vector. The
string must be the name of a custom attribute, stereotype property, or built-in property of one of
these classes:

• slreq.ReqSet
• slreq.Requirement
• slreq.Reference
• slreq.Justification

 slreq.find

1-87

• slreq.LinkSet
• slreq.Link

PropertyValue — Requirements Toolbox object property value
string scalar | character array | boolean | ...

Requirements Toolbox object property value, specified as one of these data types:

• String scalar
• Character array
• boolean
• datetime
• single
• double
• int8
• int16
• int32
• int64
• uint8
• uint16
• uint32
• uint64
• enumeration

The data type depends on the type of the built-in property, custom attribute, or stereotype property.

To search for a regular expression, use the syntax
slreq.find("Type",ObjectType,PropertyOperator,PropertyValue) and include regexp in
the PropertyOperator input. Specify PropertyValue as a string scalar or a character vector that
includes a regular expression. For more information, see “Regular Expressions”.

PropertyOperator — Requirements Toolbox object property name and operator or regular
expression
string scalar | character vector

Requirements Toolbox object property name and relational operator or regular expression, specified
as a string scalar or a character vector. This argument combines the property name and a relational
operator, separated by a colon, in a single string or character vector. For example, to specify a
property called Index and the operator >, the string is "Index:>".

The property name must be the name of a custom attribute, stereotype property, or a built-in property
of one of these classes:

• slreq.ReqSet
• slreq.Requirement
• slreq.Reference
• slreq.Justification

1 Functions

1-88

• slreq.LinkSet
• slreq.Link

The operator must be one of these options:

• regexp
• ==
• ~=
• >
• >=
• <
• <=

For more information about relational operators, see “MATLAB Operators and Special Characters”.

Use the regexp operator to search for a regular expression. For more information, see “Regular
Expressions”.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "ReqType","Functional"

ReqType — Requirement type
"Functional" | "Container" | "Informational"

Requirement type, specified as "Functional", "Container", or "Informational".
Example: "ReqType","Functional"
Data Types: char | string

LinkType — Link type
"Relate" | "Implement" | "Verify" | ...

Link type, specified as one of these types:

• "Relate"
• "Implement"
• "Verify"
• "Derive"
• "Refine"
• "Confirm"

Example: "LinkType","Relate"
Data Types: char | string

 slreq.find

1-89

Output Arguments
myReqTbxObjects — Requirements Toolbox objects
slreq.ReqSet | slreq.Requirement | slreq.Reference | ...

Requirements Toolbox objects, returned as an array of one of these objects:

• slreq.ReqSet
• slreq.Requirement
• slreq.Reference
• slreq.Justification
• slreq.LinkSet
• slreq.Link

Version History
Introduced in R2018a

See Also
Classes
slreq.ReqSet | slreq.Requirement | slreq.Reference | slreq.Justification |
slreq.LinkSet | slreq.Link

Functions
slreq.Justification.find | slreq.ReqSet.find | slreq.LinkSet.find |
slreq.Requirement.find | slreq.Reference.find

1 Functions

1-90

slreq.modeling.find
Find Requirements Table blocks

Syntax
reqTables = slreq.modeling.find(model)
reqTables = slreq.modeling.find(handle)

Description
reqTables = slreq.modeling.find(model) returns the Requirements Table blocks in the
model or subsystem specified by model.

reqTables = slreq.modeling.find(handle) returns the Requirements Table blocks in the
model or subsystem specified by the model or subsystem handle handle.

Examples

Find Requirements Table Blocks in a Model

Find the Requirements Table blocks in a model named myModel.

reqTables = slreq.modeling.find("myModel");

The function returns reqTables as an array of RequirementsTable objects.

Find Requirements Table Blocks by Using a Model Handle

Get the handle of the current model.

modelH = get_param(gcs,"Handle");

Find the Requirements Table blocks in the model named myModel.

reqTables = slreq.modeling.find(modelH);

The function returns reqTables as an array of RequirementsTable objects.

Input Arguments
model — Model or subsystem name
string scalar | character vector

Model or subsystem name, specified as a string scalar or character vector.
Data Types: char | string

handle — Model or subsystem handle
double

 slreq.modeling.find

1-91

Model or subsystem handle, specified as a double. To retrieve the handle, you can use the get_param
function:

modelH = get_param(gcs,"Handle");

Data Types: double

Output Arguments
reqTables — Requirements Table blocks
array of RequirementsTable objects

Requirements Table blocks, returned as an array of RequirementsTable objects.

Version History
Introduced in R2022a

See Also
Functions
slreq.modeling.create | get_param

Objects
RequirementsTable

Topics
“Use a Requirements Table Block to Create Formal Requirements”

1 Functions

1-92

findSymbol
Package: slreq.modeling

Retrieve data in Requirements Table block

Syntax
data = findSymbol(reqTable)
data = findSymbol(reqTable,Name=Value)

Description
data = findSymbol(reqTable) returns the data defined in the Requirements Table block,
reqTable.

data = findSymbol(reqTable,Name=Value) returns the data and refines the results by using
one or more name-value arguments.

Examples

Find the Data in a Requirements Table Block

Retrieve the RequirementsTable object from a model named myModel.

table = slreq.modeling.find("myModel");

Retrieve the data in the block as a Symbol object array.

data = findSymbol(table);

Find Data with Specified Scope and Type Properties

In an model named myModel, retrieve the RequirementsTable object.

table = slreq.modeling.find("myModel");

Retrieve only data of data type Single that has a scope of Output.

data = findSymbol(table,Scope="Output",Type="Single");

Input Arguments
reqTable — Requirements Table block
RequirementsTable object

Requirements Table block, specified as a RequirementsTable object.

 findSymbol

1-93

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: findSymbol(table,Complexity="Off") finds data where the Complexity property is
set to Off.

Complexity — Whether data accepts complex values
"Off" (default) | "On" | "Inherited"

Whether the data accepts complex values, specified as one of these values:

Complexity Description
"Inherited" The data inherits complexity based on the Scope

property. Input and output data inherit
complexity from the Simulink signals connected
to the associated input and output ports. Local
and parameter data inherit complexity from the
parameter to which the data is bound.

"Off" The data is a real number.
"On" The data is a complex number.

Data Types: enumerated

isDesignOutput — Whether data is design model output
false or 0 (default) | true or 1

Whether the data is a design model output, specified as a numeric or logical 1 (true) or 0 (false).
This property applies only when the Scope property is Input. For more information, see “Treat as
design model output for analysis”.
Data Types: logical

Name — Name of data
"data" (default) | string scalar | character vector

Name of the data, specified as a string scalar or character vector.
Data Types: char | string

Scope — Scope of data
"Input" (default) | "Output" | "Local" | "Constant" | "Parameter"

Scope of the data that specifies where the data resides in memory relative to the block, specified as
one of these values:

Scope Description
"Input" The data is an input signal to a Requirements

Table block.
"Output" The data is an output signal of a Requirements

Table block.

1 Functions

1-94

Scope Description
"Local" The data is defined in the current block only.
"Constant" The data is a read-only constant value that is

visible to the block.
"Parameter" The data resides in a variable of the same name

in the MATLAB workspace, the model workspace,
or in the workspace of a masked subsystem that
contains this block.

Data Types: enumerated

Size — Size of data
"-1" (default) | string scalar | character vector

Size of the data, specified as a string scalar or character vector. This property must resolve to a
scalar value or a MATLAB vector of values. The default value is "–1", which means that the size is
inherited. For more information, see “Inherit Size from Simulink” (Simulink).
Data Types: char | string

Type — Data type
"Inherit: Same as Simulink" (default) | "double" | "single" | "int8" | ...

Data type, specified as:

• "Inherit: Same as Simulink"
• "double"
• "single"
• "half"
• "int64"
• "int32"
• "int16"
• "int8"
• "uint64"
• "uint32"
• "uint16"
• "uint8"
• "boolean"
• "string"
• "fixdt(1,16,0)"
• "fixdt(1,16,2^0,0)"
• "Enum: <class name>"
• "Bus: <object name>"

To modify the data type properties, use the Symbols pane and Property Inspector. For more
information, see “Set Data Types in Requirements Table Blocks”.
Data Types: enumerated

 findSymbol

1-95

Output Arguments
data — Requirements Table block data
Symbol object array

Requirements Table block data, returned as a Symbol object array. The Symbol objects are organized
by their time of creation via the array index. You cannot reorganize the data order. For more
information on data creation, see “Define Data in Requirements Table Blocks”.

Version History
Introduced in R2022a

See Also
Objects
Symbol | RequirementsTable

Functions
addSymbol

Topics
“Use a Requirements Table Block to Create Formal Requirements”
“Define Data in Requirements Table Blocks”

1 Functions

1-96

slreq.generateReport
Generate report for requirement set

Syntax
myReportPath = slreq.generateReport(reqSetList, reportOpts)

Description
myReportPath = slreq.generateReport(reqSetList, reportOpts) generates a report for
the requirement sets specified by reqSetList using the options specified by reportOpts and
returns the path myReportPath to the report.

Examples
Generate Requirement Report

% Generate a requirement report in Microsoft(R) Word
% format for all loaded requirement sets

% Get default report generation options structure
myReportOpts = slreq.getReportOptions();

% Specify the generated report path and file name
myReportOpts.reportPath = 'L:\My_Project\Reqs_Report.docx';

% Generate the report for all loaded requirement sets
myReport = slreq.generateReport('all', myReportOpts);

Note To generate reports in PDF and HTML formats, specify a .pdf or a .html file name as the
reportPath value.

Input Arguments
reqSetList — Requirement set
character vector (default) | slreq.ReqSet object | array

Requirement sets for report generation. You can specify a single requirement set or an array of
requirement sets. To generate a report for all the loaded requirement sets, specify 'all' as the
reqSetList value. If you do not specify a value for reqSetList, 'all' is used as default.

reportOpts — Report generation options
structure

Report generation options specified as a MATLAB structure. If reportOpts is not specified, the
report is generated using the default options specified in slreq.getReportOptions.

 slreq.generateReport

1-97

Options

Fields Data Type Description
reportPath character vector Generated report path.
titleText character vector Report title.
authors character vector Report authors.
includes.toc Boolean Option to include table of

contents in your report.
includes.links Boolean Option to include requirements

links in your report.
includes.rationale Boolean Option to include requirements

rationale in your report.
includes.customAttribute
s

Boolean Option to include requirement
set custom attributes in your
report

includes.comments Boolean Option to include requirement
comments in your report.

includes.implementationS
tatus

Boolean Option to include requirement
implementation status data in
your report.

includes.verificationSta
tus

Boolean Option to include requirement
verification status data in your
report.

includes.keywords Boolean Option to include requirement
implementation status data in
your report.

includes.emptySections Boolean Option to include empty
sections in your report.

includes.revision Boolean Option to include requirement
revision information in your
report.

Output Arguments
myReportPath — Generated report path
character vector

The file path for the generated report, specified as a character vector.

Version History
Introduced in R2018a

See Also
slreq.getReportOptions

1 Functions

1-98

Topics
“Report Requirements Information”

 slreq.generateReport

1-99

slreq.generateTraceabilityDiagram
Create a traceability diagram

Syntax
slreq.generateTraceabilityDiagram(startingItem)

Description
slreq.generateTraceabilityDiagram(startingItem) creates a traceability diagram that
originates from startingItem. If a traceability diagram is already open for the specified item, the
diagram comes to the foreground.

Note If you create a diagram from a link, the link source is the starting node. Similarly, if you create
a diagram from a link set, the artifact specified by the Artifact is the starting node.

Examples

Create a Traceability Diagram from a Requirement

This example shows how to create a traceability diagram from a requirement object.

Open the CruiseRequirementsExample project. Load the crs_req_func_spec requirement set.

slreqCCProjectStart;
slreq.load("crs_req_func_spec");

Find the Enable Switch Detection requirement.

req = slreq.find(Type="Requirement",Summary="Enable Switch Detection");

Create a traceability diagram for the Enable Switch Detection requirement.

slreq.generateTraceabilityDiagram(req)

Create a Traceability Diagram from a Link

This example shows how to create a traceability diagram from a link object.

Open the CruiseRequirementsExample project. Load the crs_req requirement set, which also
loads the crs_req link set.

slreqCCProjectStart;
slreq.load("crs_req");

Find the crs_req link set. Then find the link with description #9: Enable Switch Detection.

1 Functions

1-100

myLinkSet = slreq.find(Type="LinkSet",Name="crs_req");
myLink = find(myLinkSet,Type="Link",Description="#9: Enable Switch Detection");

Create a traceability diagram from the link.

slreq.generateTraceabilityDiagram(myLink)

Create a Traceability Diagram from a Requirement Set

This example shows how to create a traceability diagram from a requirement set.

Open the CruiseRequirementsExample project. Load the crs_req_func_spec requirement set.

slreqCCProjectStart;
rs = slreq.load("crs_req_func_spec");

Create a traceability diagram for the crs_req_func_spec requirement set by using the relative file
path.

relpath = fullfile("documents","crs_req_func_spec.slreqx")

relpath =
"documents\crs_req_func_spec.slreqx"

slreq.generateTraceabilityDiagram(relpath)

Create a Traceability Diagram from a Link Set

This example shows how to create a traceability diagram from a link set.

Open the CruiseRequirementsExample project. Load the crs_req link set.

slreqCCProjectStart;

ls = slreq.load("crs_req.slmx");

Create a traceability diagram for the crs_req link set by using the relative file path.

relpath = fullfile("documents","crs_req.slmx")

relpath =
"documents\crs_req.slmx"

slreq.generateTraceabilityDiagram(relpath)

Input Arguments
startingItem — Starting item for diagram
slreq.Requirement object | slreq.Reference object | slreq.Justification object |
slreq.Link object | slreq.ReqSet object | slreq.LinkSet object | string scalar | character
vector

 slreq.generateTraceabilityDiagram

1-101

Starting item to create the traceability diagram from, specified as a:

• slreq.Requirement object
• slreq.Reference object
• slreq.Justification object
• slreq.Link object
• slreq.ReqSet object
• slreq.LinkSet object
• String scalar or character vector that contains the short name, relative file path, or full file path

for a requirement set or link set

Version History
Introduced in R2021b

See Also
Topics
“Visualize Links with a Traceability Diagram”
“Assess Allocation and Impact”

1 Functions

1-102

slreq.generateTraceabilityMatrix
Create traceability matrix

Syntax
slreq.generateTraceabilityMatrix
slreq.generateTraceabilityMatrix(opts)

Description
slreq.generateTraceabilityMatrix opens the Traceability Matrix window.

slreq.generateTraceabilityMatrix(opts) creates a traceability matrix with the artifacts
specified by opts.

Examples

Open the Traceability Matrix Window

Open the Traceability Matrix window.

slreq.generateTraceabilityMatrix

Close the Traceability Matrix window.

slreq.clear;

Programmatically Generate a Traceability Matrix

This example shows how to create an options structure for a traceability matrix, then generate a
matrix using those options.

Open the Requirements Definition for a Cruise Control Model project.

slreqCCProjectStart;

Create an options structure for a traceability matrix.

opts = slreq.getTraceabilityMatrixOptions;

Set the leftArtifacts and topArtifacts fields of opts. Enter a cell array containing the name
of the artifacts that you want to use in your traceability matrix.

opts.leftArtifacts = {'crs_req.slreqx','crs_req_func_spec.slreqx'};
opts.topArtifacts = {'crs_plant.slx', 'crs_controller.slx','DriverSwRequest_Tests.mldatx'};

Generate the traceability matrix with the artifacts specified by opts.

slreq.generateTraceabilityMatrix(opts)

 slreq.generateTraceabilityMatrix

1-103

Cleanup

Clear the open requirement sets and link sets, and close the Traceability Matrix window.

slreq.clear;

Input Arguments
opts — Traceability matrix options
struct

Traceability matrix options, specified as a struct with these fields:

• leftArtifacts
• topArtifacts

Version History
Introduced in R2021a

See Also
slreq.getTraceabilityMatrixOptions

Topics
“Track Requirement Links with a Traceability Matrix”

1 Functions

1-104

getAssumptionRows
Package: slreq.modeling

Retrieve assumptions in Requirements Table block

Syntax
assumptionRows = getAssumptionRows(reqTable)

Description
assumptionRows = getAssumptionRows(reqTable) returns the assumptions of the
Requirements Table block specified by reqTable.

Examples

Retrieve Assumptions from a Requirements Table Block

Retrieve the RequirementsTable object from a model named myModel.

table = slreq.modeling.find("myModel");

Retrieve the assumptions as an array of AssumptionRow objects.

row = getAssumptionRows(table);

Input Arguments
reqTable — Requirements Table block
RequirementsTable object

Requirements Table block, specified as a RequirementsTable object.

Output Arguments
assumptionRows — Assumptions
array of AssumptionRow objects

Assumptions in the Requirements Table block, returned as an array of AssumptionRow objects.

Version History
Introduced in R2022a

See Also
Blocks
Requirements Table

 getAssumptionRows

1-105

Functions
addAssumptionRow

Objects
RequirementsTable | AssumptionRow

1 Functions

1-106

getChildren
Package: slreq.modeling

Retrieve child requirements and assumptions in Requirements Table block

Syntax
children = getChildren(row)

Description
children = getChildren(row) returns the child requirements or assumptions of the row
specified by row.

Examples

Retrieve Child Requirements from a Requirements Table Block

Retrieve the RequirementsTable object from a model named myModel.

table = slreq.modeling.find("myModel");

Retrieve the top-level requirements as an array of RequirementRow objects.

row = getRequirementRows(table);

Retrieve the child requirements of the first requirement as an array of RequirementRow objects.

children = getChildren(row(1));

You can find children of the child rows by calling getChildren on child rows.

Input Arguments
row — Requirement or assumption
RequirementRow object | AssumptionRow object

Requirement or assumption in a Requirements Table block, specified as a RequirementRow or
AssumptionRow object. To retrieve the row, use getRequirementRows or getAssumptionRows.

Output Arguments
children — Child requirements or assumptions
array of RequirementRow objects | array of AssumptionRow objects

Child requirements or assumptions, specified as an array of RequirementRow or AssumptionRow
objects. For more information on requirement hierarchies in Requirements Table blocks, see
“Establish Hierarchy in Requirements Table Blocks”.

 getChildren

1-107

Version History
Introduced in R2022a

See Also
Blocks
Requirements Table

Functions
addRequirementRow | addAssumptionRow

Objects
RequirementsTable | AssumptionRow | RequirementRow

Topics
“Establish Hierarchy in Requirements Table Blocks”

1 Functions

1-108

getConfigurationContextNames
Package: oslc

Get configuration context names from OSLC service provider

Syntax
configs = getConfigurationContextNames(myClient)

Description
configs = getConfigurationContextNames(myClient) returns the configuration context
names for the service provider specified for the OSLC client myClient.

Examples

Create and Configure an OSLC Client for the Requirements Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the requirements management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Then set the service root and catalog path for
the requirements management domain and the configuration query path.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'/oslc_rm/catalog');
setConfigurationQueryPath(myClient,'gc/oslc-query/configurations');
myClient

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

providers =

 4×1 cell array

 {'OSLC Plugin' }
 {'Model Based Design with OSLC' }
 {'OSLC4RM' }
 {'Interactive Testing (Requirements Management)'}

 getConfigurationContextNames

1-109

setServiceProvider(myClient,'OSLC Plugin');

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/rm/oslc_rm/catalog'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

Output Arguments
configs — Configuration context names
cell array

Configuration context names for the configured service provider, returned as a cell array.

Version History
Introduced in R2021a

See Also
oslc.Client | setConfigurationContext | login | setServiceProvider |
getServiceProviderNames | setConfigurationQueryPath

1 Functions

1-110

getCreationFactory
Package: oslc

Get OSLC creation service object

Syntax
myCreationFactory = getCreationFactory(myClient)
myCreationFactory = getCreationFactory(myClient,resourceType)

Description
myCreationFactory = getCreationFactory(myClient) returns all available creation factories
for the OSLC client myClient.

myCreationFactory = getCreationFactory(myClient,resourceType) returns a creation
factory for the resource type specified by resourceType for the OSLC client myClient.

Examples

Create All Available Creation Factories for an OSLC Client

This example shows how to create all available creation factories for a previously configured OSLC
client.

After you have created and configured an OSLC client as described in “Create and Configure an
OSLC Client for the Requirements Management Domain” on page 2-3, create all available creation
factories for the client myClient.

myCreationFactory = getCreationFactory(myClient)

myCreationFactory =

 1×8 CreationFactory array with properties:

 client
 creation
 resourceShape
 title
 resourceType

Examine the creation factory resourceType to determine which creation factory you want to use.

myCreationFactory(8).resourceType

ans =

 1×1 cell array

 getCreationFactory

1-111

 {'http://open-services.net/ns/rm#Requirement'}

Submit a Creation Request by using a Creation Factory

This example shows how to submit a creation request by using a creation factory with a previously
configured OSLC client.

After you have created and configured an OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a
creation factory for the requirement resource type.

myCreationFactory = getCreationFactory(myClient,'Requirement')

myCreationFactory =

 CreationFactory with properties:

 client: [1×1 oslc.Client]
 creation: 'https://localhost:9443/rm/requirementFactory?projectURL=https%3A...'
 resourceShape: {1×22 cell}
 title: 'Requirement Creation Factory'
 resourceType: {'http://open-services.net/ns/rm#Requirement'}

Create a new requirement resource by using a creation factory and name the resource My New
Requirement. Fetch the full resource properties for the requirement resource. Then commit the
changes to the service provider.

newReq = createRequirement(myCreationFactory,'My New Requirement');
status = fetch(newReq,myClient)

status =

 StatusCode enumeration

 OK

status = commit(newReq,myClient)

status =

 StatusCode enumeration

 OK

View the resource that you created in the service provider.

show(newReq)

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

1 Functions

1-112

resourceType — OSLC resource type
'Requirement' | 'RequirementCollection' | 'TestCase' | 'TestExecutionRecord' |
'TestPlan' | 'TestResult' | 'TestScript' | 'ChangeRequest'

OSLC resource type, specified as character array with one of these values:

• 'ChangeRequest'
• 'TestCase'
• 'TestExecutionRecord'
• 'TestPlan'
• 'TestResult'
• 'TestScript'
• 'Requirement'
• 'RequirementCollection'

The specified resource type must match the domain for the configured oslc.Client object.

Output Arguments
myCreationFactory — Resource creation factory
oslc.core.CreationFactory object

OSLC resource creation factory, specified as an oslc.core.CreationFactory object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | oslc.rm.Requirement |
oslc.cm.ChangeRequest | oslc.qm.TestCase

 getCreationFactory

1-113

getCustomLoginProvider
Package: oslc

Get registered custom authentication callback function name for OSLC client

Syntax
authenticationFunction = getCustomLoginProvider(myClient)

Description
authenticationFunction = getCustomLoginProvider(myClient) returns the custom
authentication callback function name registered to the OSLC client myClient.

Examples

Get Registered Custom Authentication Callback Function

This example shows how to get the name of the custom authentication callback function that is
registered to an OSLC client object.

After you have created and registered a custom authentication callback function to an OSLC client
object as described in “Authenticate a Client that Requires an Advanced Authentication” on page 1-
292, get the registered authentication callback function name for the OSLC client object myClient.

authenticationFunction = getCustomLoginProvider(myClient)

authenticationFunction =

 'myCustomLoginProvider'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

Output Arguments
authenticationFunction — Custom authentication callback function name
character vector

Custom authentication callback function name, returned as a character vector.

Version History
Introduced in R2021b

1 Functions

1-114

See Also
oslc.Client | setCustomLoginProvider

 getCustomLoginProvider

1-115

slreq.getCurrentImportOptions
Get import options in PreImportFcn callback

Syntax
importOptions = slreq.getCurrentImportOptions

Description
importOptions = slreq.getCurrentImportOptions returns the import options for the current
import. You can only call this function in the PreImportFcn callback.

Examples

Use PreImportFcn Callback During Import

This example shows how to assign a script as the PreImportFcn callback for an Import node. You
get the contents of the PreImportFcn callback for an Import node and register a different script as
the PreImportFcn callback after you import the requirements.

Import the Requirements

Use slreq.import to import the ReqIF™ file mySpec.reqif into Requirements Toolbox™. Name
the imported requirement set myReqSet and register the script myPreImportScript as the
PreImportFcn callback to use during import. Return a handle to the requirement set.

[~,~,rs] = slreq.import("mySpec.reqif",ReqSet="myReqSet",preImportFcn="myPreImportScript");

The script myPreImportScript uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

type myPreImportScript.m

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile.xml";

The mapping file myMappingFile.xml uses a generic mapping.

Get the custom ID for the requirement with Index set to 1.

req1 = find(rs,Index="1");
cID = req1.CustomId

cID =

 0x0 empty char array

The generic mapping does not map the ReqIF attribute ID to the Requirement Toolbox attribute
Custom ID. Instead, ID imports as a custom attribute. Get the value for the ID custom attribute for
Requirement 1.

1 Functions

1-116

cID = getAttribute(req1,"ID")

cID =
'A1'

Get and Set the PreImportFcn Callback Script

Get a handle to the Import node, then register the script myPreImportScrip2 as the
PreImportFcn callback. Confirm that the registered callback was changed.

topRef = children(rs);
setPreImportFcn(topRef,"myPreImportScript2")
newCallback = getPreImportFcn(topRef)

newCallback =
'myPreImportScript2'

The script myPreImportScript2 uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

type myPreImportScript2.m

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile2.xml";

The mapping file myMappingFile2.xml maps these attributes from the ReqIF™ file to these
properties in Requirements Toolbox™:

• ReqSum to Summary
• Desc to Description
• ID to Custom ID

Update the requirement set. The PreImportFcn callback script also executes when you update the
requirement set.

updateReferences(rs,topRef);

Get the custom ID for the requirement with Index set to 1.

req1 = find(rs,Index="1");
cID = req1.CustomId

cID =
'A1'

Output Arguments
importOptions — Import options
slreq.callback.CustomImportOptions object | slreq.callback.DOORSImportOptions
object | ...

Import options, returned as one of these objects:

• slreq.callback.CustomImportOptions
• slreq.callback.DOORSImportOptions

 slreq.getCurrentImportOptions

1-117

• slreq.callback.MSExcelImportOptions
• slreq.callback.MSWordImportOptions
• slreq.callback.ReqIFImportOptions

Version History
Introduced in R2022a

See Also
slreq.Reference | getPreImportFcn | setPreImportFcn

Topics
“Use Callbacks to Customize Requirement Import Behavior”

1 Functions

1-118

slreq.getCurrentObject
Get selected objects in Requirements Editor, Requirements Browser, or Requirements Table block

Syntax
myReqObj = slreq.getCurrentObject

Description
myReqObj = slreq.getCurrentObject returns the currently selected item or items in the
Requirements Editor or Requirements Browser, or the currently selected requirement in a
Requirements Table block.

Note If you select an item and then select an item or group of items in a different window or block,
the function returns the most recently selected item or group of items.

Examples

Get API Object for Selection in Requirements Editor

This example shows how to get the object for the most recently selected item or items in the
Requirements Editor or the Requirements Perspective.

Open the CruiseRequirementsExample project. Load the crs_req_func_spec requirement set
and open it in the Requirements Editor.

slreqCCProjectStart;
slreq.open('crs_req_func_spec');

In the Requirements Editor, select requirement #1: Driver Switch Request Handling. Get
the object for the selected requirement, then inspect the incoming links.

myReqObj = slreq.getCurrentObject;
lk = slreq.inLinks(myReqObj)

lk =
 Link with properties:

 Type: 'Implement'
 Description: '#1: Driver Switch Request Handling'
 Keywords: {}
 Rationale: ''
 CreatedOn: 20-May-2017 11:19:44
 CreatedBy: 'itoy'
 ModifiedOn: 17-Aug-2017 14:41:16
 ModifiedBy: 'itoy'
 Revision: 1
 SID: 1
 Comments: [0×0 struct]

 slreq.getCurrentObject

1-119

Get slreq.Requirement Object for Selected Requirement in Requirements Table Block

Create a new model and add a Requirements Table block to the model.

Open the block to view the empty requirement.

Click the index number to select the requirement.

Get the slreq.Requirement object for the selected requirement.

myReqObj = slreq.getCurrentObject;

Output Arguments
myReqObj — Requirements Toolbox object
slreq.ReqSet object | slreq.Requirement object | slreq.Reference object |
slreq.Justification object | slreq.LinkSet object | slreq.Link object

Requirements Toolbox object, returned as a:

• slreq.ReqSet object
• slreq.Requirement object
• slreq.Reference object
• slreq.Justification object
• slreq.LinkSet object
• slreq.Link object

Tips
• If you execute this function during Requirements Toolbox callbacks, the function returns the

target of the callback:

• PreImportFcn — Returns empty when you are importing requirements. Returns a handle to
the Import node when you are updating requirements.

• PostImportFcn — Returns a handle to the Import node. If you are importing multiple
specifications from a ReqIF™ file, the function returns an array of Import nodes. For more
information, see “Import Requirements from ReqIF Files”.

• PostLoadFcn — Returns a handle to the requirement set.
• PreSaveFcn — Returns a handle to the requirement set.

1 Functions

1-120

For more information, see “Use Callbacks to Customize Requirement Import Behavior” and
“Execute Code When Loading and Saving Requirement Sets”.

Version History
Introduced in R2021a

See Also
slreq.getExternalURL | slreq.editor

 slreq.getCurrentObject

1-121

getDialog
Package: oslc

Get user interface dialogs from OSLC service provider

Syntax
myDialog = getDialog(myClient)

Description
myDialog = getDialog(myClient) returns the available user interface dialogs for the OSLC
client myClient.

Examples

Get and View OSLC User Interface Dialogs

This example shows how to get and view an OSLC user interface dialog for a configured OSLC client.

After you have created and configured an OSLC client as described in “Create and Configure an
OSLC Client for the Requirements Management Domain” on page 2-3, get the available user
interface dialogs in the requirements management domain of the client myClient.

dialogs = getDialog(myClient)

dialogs =

 1×4 Dialog array with properties:

 dialog
 hintWidth
 hintHeight
 title
 resourceType

Examine the properties of one of the dialogs. From the title, determine the resource type and if the
dialog is for creating or selecting resources.

myDialog = dialogs(1);
title = myDialog.title

title =

 'Requirement Creation'

Open the dialog in a browser.

1 Functions

1-122

view(myDialog)

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

Output Arguments
myDialog — OSLC user interface dialog
oslc.core.Dialog object

OSLC user interface dialog, returned as an oslc.core.Dialog object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.Dialog | view

 getDialog

1-123

slreq.getExternalURL
Get navigation URL for link source or destination, requirement, test or Simulink model element

Syntax
navURL = slreq.getExternalURL(myDesignItem)
[navURL,navLabel] = slreq.getExternalURL(myDesignItem)

Description
navURL = slreq.getExternalURL(myDesignItem) returns a navigation URL to a link source or
destination, requirement, test or Simulink model element specified by myDesignItem.

Note The MATLAB embedded web server must run on HTTP port 31415 to create the navigation
URLs. If your MATLAB session is not configured for this HTTP port number, an error occurs when you
try to create a link. Use connector.port to check the configured port number. If connector.port
returns 0, use rmipref('UnsecureHttpRequests',true) to enable the embedded HTTP server.
If connector.port returns a number that is not 31415, close all instances of MATLAB and reopen
one instance.

[navURL,navLabel] = slreq.getExternalURL(myDesignItem) also returns an external
navigation label, navLabel.

Examples

Get a Navigation URL for a Link Source or Destination

Open the CruiseRequirementsExample project. Load the crs_req requirement set.

slreqCCProjectStart;
slreq.load("crs_req");

Find the crs_req link set. Find the link with description #9: Enable Switch Detection.

myLinkSet = slreq.find(Type="LinkSet",Name="crs_req");
myLink = find(myLinkSet,Description="#9: Enable Switch Detection");

Get a navigation URL to the link source.

navURL1 = slreq.getExternalURL(myLink.source)

navURL1 =
'http://127.0.0.1:31415/matlab/feval/rmi.navigate?arguments=[%22linktype_rmi_slreq%22,%22crs_req.slreqx%22,%2210%22,%22%22]'

Get a navigation URL to the link destination.

navURL2 = slreq.getExternalURL(myLink.destination)

1 Functions

1-124

navURL2 =
'http://127.0.0.1:31415/matlab/feval/rmi.navigate?arguments=[%22linktype_rmi_slreq%22,%22crs_req_func_spec.slreqx%22,%229%22,%22%22]'

Get a Navigation URL for a Requirement Object

Open the CruiseRequirementsExample project. Load the crs_req_func_spec requirement set
and open it in the Requirements Editor.

slreqCCProjectStart;
rs = slreq.load("crs_req");
rs2 = slreq.open("crs_req_func_spec");

In the Requirements Editor, in the crs_req_func_spec requirement set, select the requirement
with ID #1. Get an API object for the requirement by using slreq.getCurrentObject. Then get an
external navigation URL for the requirement and a label for the URL.

req = slreq.getCurrentObject;
[navURL1,navLabel1] = slreq.getExternalURL(req)

navURL1 =
'http://127.0.0.1:31415/matlab/feval/rmi.navigate?arguments=[%22linktype_rmi_slreq%22,%22crs_req_func_spec.slreqx%22,%221%22,%22%22]'

navLabel1 =
'Driver Switch Request Handling'

Find a justification in the requirement set with ID #72. Get an external URL navigation URL for the
justification and a label for the URL.

jt = find(rs2,Type="Justification",ID="#72");
[navURL2,navLabel2] = slreq.getExternalURL(jt)

navURL2 =
'http://127.0.0.1:31415/matlab/feval/rmi.navigate?arguments=[%22linktype_rmi_slreq%22,%22crs_req_func_spec.slreqx%22,%2272%22,%22%22]'

navLabel2 =
'Non-functional requirement'

Find all loaded referenced requirements. Get an external navigation URL for the third referenced
requirement and a label for the URL.

refs = find(rs,Type="Reference");
ref = refs(3);
[navURL3,navLabel3] = slreq.getExternalURL(ref)

navURL3 =
'http://127.0.0.1:31415/matlab/feval/rmi.navigate?arguments=[%22linktype_rmi_slreq%22,%22crs_req.slreqx%22,%223%22,%22%22]'

navLabel3 =
'System overview'

Cleanup

Clear the loaded requirement sets and link sets. Close the Requirements Editor.

slreq.clear;

 slreq.getExternalURL

1-125

Get a Navigation URL for a Model Element

Open the CruiseRequirementsExample project. Open the crs_plant model.

slreqCCProjectStart;
open_system("crs_plant");

Select the Transmission subsystem and use gcb or gcbh to get a path or handle to the subsystem.
Then get an external navigation URL to the subsystem and a label for the URL.

subsys = gcb

subsys =
'crs_plant/Transmission'

[navURL1,navLabel1] = slreq.getExternalURL(subsys)

navURL1 =
'http://127.0.0.1:31415/matlab/feval/rmiobjnavigate?arguments=[%22crs_plant.slx%22,%22:414%22]'

navLabel1 =
'Transmission'

Look inside the shift_logic mask by clicking the icon. Select the first Stateflow® state and
use sfgco to get a handle to the state. Then get an external navigation URL to the state and a label
for the URL.

firstState = sfgco

firstState =
 State with properties:

 Name: 'first'
 Id: 28
 Path: 'crs_plant/shift_logic/gear_state'
 SSIdNumber: 6
 Subviewer: [1×1 Stateflow.Chart]
 Description: ''
 LabelString: 'first↵'
 EntryAction: ''
 DuringAction: ''
 ExitAction: ''
 OnAction: {0×1 cell}
 MooreAction: ''
 FontSize: 10
 ArrowSize: 9.2240
 TestPoint: 0
 Chart: [1×1 Stateflow.Chart]
 BadIntersection: 0
 Document: ''
 RequirementInfo: ''
 ExecutionOrder: 0
 ContentPreviewEnabled: 0
 Tag: []
 IsSubchart: 0
 IsGrouped: 0

1 Functions

1-126

 Debug: [1×1 Stateflow.StateDebug]
 EnumTypeName: 'firstModeType'
 Position: [50.7030 39.5270 85.3400 36.9140]
 LoggingInfo: [1×1 Stateflow.SigLoggingInfo]
 LogStateActivity: 0
 ASLEnabledViaAncestor: 0
 IsExplicitlyCommented: 0
 IsImplicitlyCommented: 0
 CommentText: ''
 Decomposition: 'EXCLUSIVE_OR'
 Type: 'OR'
 InlineOption: 'Auto'
 Machine: [1×1 Stateflow.Machine]
 HasOutputData: 0
 OutputMonitoringMode: 'SelfActivity'
 OutputData: []

[navURL2,navLabel2] = slreq.getExternalURL(firstState)

navURL2 =
'http://127.0.0.1:31415/matlab/feval/rmiobjnavigate?arguments=[%22crs_plant.slx%22,%22:413:6%22]'

navLabel2 =
'first'

Get a Navigation URL for a Simulink Test Case

Open the CruiseRequirementsExample project. Load the DriverSwRequest_Tests test file.

slreqCCProjectStart;
tf = sltest.testmanager.load("DriverSwRequest_Tests.mldatx");

Get the test suite in the test file.

suite = getTestSuites(tf);

Get the test cases in the test suite. Get an external navigation URL for the first test case and get a
label for the navigation URL.

cases = getTestCases(suite)

cases=1×8 object
 1×8 TestCase array with properties:

 Name
 TestFile
 TestPath
 TestType
 RunOnTarget
 Parent
 Requirements
 Description
 Enabled
 ReasonForDisabling
 Tags

 slreq.getExternalURL

1-127

case1 = cases(1)

case1 =
 TestCase with properties:

 Name: 'Enable button'
 TestFile: [1×1 sltest.testmanager.TestFile]
 TestPath: 'DriverSwRequest_Tests > Unit test for DriverSwRequest > Enable button'
 TestType: 'simulation'
 RunOnTarget: {[0]}
 Parent: [1×1 sltest.testmanager.TestSuite]
 Requirements: [1×1 struct]
 Description: ''
 Enabled: 1
 Tags: [0×0 string]

[navURL,navLabel] = slreq.getExternalURL(case1)

navURL =
'http://127.0.0.1:31415/matlab/feval/rmitmnavigate?arguments=[%22DriverSwRequest_Tests.mldatx%22,%223b7651c7-826b-431c-928b-f1f80a674351%22]'

navLabel =
'Enable button'

Cleanup

Clear the loaded test files.

sltest.testmanager.clear;

Input Arguments
myDesignItem — Link source or destination, requirement, test, or model element
slreq.link source or destination structure | Requirements Toolbox object | path or handle to model
element | Simulink Test™ object

Item in MATLAB or Simulink, specified as:

• slreq.Link source or destination structure
• Requirements Toolbox object:

• slreq.Requirement
• slreq.Reference
• slreq.Justification

• Path or handle to:

• Simulink system or block
• Stateflow chart, subchart, state, or transition
• System Composer™ model or component

• Simulink Test object:

• sltest.testmanager.TestFile

1 Functions

1-128

• sltest.testmanager.TestSuite
• sltest.testmanager.TestCase
• sltest.testmanager.TestIteration

Output Arguments
navURL — External navigation URL
character array

External navigation URL, returned as a character array.

navLabel — External navigation URL label
character array

External navigation URL label, returned as a character array.

Tips
• You can copy the external navigation URL to your clipboard for a:

• Requirements Toolbox requirement, referenced requirement, or justification
• Simulink, Stateflow, or System Composer model element
• Simulink data dictionary entry

Right-click one of these items in the Requirements Editor or Simulink Editor and select Copy
URL to Clipboard, or select Requirements > Copy URL to Clipboard.

Version History
Introduced in R2021a

See Also
slreq.getCurrentObject | gcb | gcbh | sfgco | sltest.testmanager.getTestFiles

 slreq.getExternalURL

1-129

getLinks
Package: oslc.rm

Get locally stored traceability links from OSLC requirement resource object

Syntax
URLs = getLinks(reqResource)

Description
URLs = getLinks(reqResource) returns the resource URLs associated with the rdf:resource
attribute of the RDF/XML element j.0:Link for the requirement or requirement collection resource
specified by reqResource. For more information about RDF/XML elements, see An XML Syntax for
RDF on the World Wide Web Consortium website and QM Resource Definitions on the Open Services
for Lifecycle Collaboration (OSLC) website.

Examples

Add and Remove Links from OSLC Resources to Requirement

This example shows how to add and remove links from OSLC resources to an OSLC requirement.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type. Submit a query request to the service provider for the
available requirement resources.

myQueryCapability = getQueryService(myClient,'Requirement');
reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign one of the requirements to a variable called myReq and one to linkReq. Fetch the full
resource properties for the requirements.

myReq = reqs(1);
linkReq = reqs(5);
fetch(myReq,myClient);
fetch(linkReq,myClient);

Add a link from linkReq to myReq. Confirm the link creation by getting the links for myReq.

1 Functions

1-130

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions

addLink(myReq,linkReq)
links = getLinks(myReq)

links =

 1×1 cell array

 {'https://localhost:9443/rm/CA_3d5ba3752e2c489b965a3ecceffb664a'}

In the service provider, identify a test case to link to the requirement. Identify the resource URL of
the test case and assign it to a variable called URL. Add a link from URL to myReq. Confirm the link
creation by getting the links for myReq.

URL = 'https://localhost:9443/qm/_ibz6tGWYEeuAF8ZpKyQQtg';
addLink(myReq,URL)
links = getLinks(myReq)

links =

 1×2 cell array

 {'https://localhost:9443/rm...'} {'https://localhost:9443/qm...'}

Commit the changes to the service provider.

status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

Fetch the full resource properties for the updated requirement myReq.

status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

Get the resource URLs linked to myReq.

links = getLinks(myReq)

links =

 1×2 cell array

 {'https://localhost:9443/rm...'} {'https://localhost:9443/qm...'}

Get the URL for the first linked resource and assign it to URL.

URL = links{1}

URL =

 'https://localhost:9443/rm/CA_3d5ba3752e2c489b965a3ecceffb664a'

 getLinks

1-131

Before removing the link from myReq, confirm that the resource URL points to the requirement that
you want to remove. Create a requirement resource object and set the resource URL. Fetch the full
resource properties for the requirement and inspect the requirement.

req = oslc.rm.Requirement;
setResourceUrl(req,URL);
status = fetch(req,myClient)

status =

 StatusCode enumeration

 OK

req

ans =

 Requirement with properties:

 ResourceUrl: 'https://localhost:9443/rm/CA_3d5ba3752e2c489b965a...'
 Dirty: 0
 IsFetched: 1
 Title: '[SAFe] Lifecycle Scenario Template'
 Identifier: '1165'

Remove the link from myReq and commit the changes to the service provider.

removeLink(myReq,URL)
status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

Fetch the full resource properties for the updated requirement myReq.

status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

Verify the link removal by getting the URLs for the resources linked to myReq.

links = getLinks(myReq)

links =

 1×1 cell array

1 Functions

1-132

 {'https://localhost:9443/qm/_ibz6tGWYEeuAF8ZpKyQQtg'}

Input Arguments
reqResource — OSLC requirement resource
oslc.rm.Requirement object | oslc.rm.RequirementCollection object

OSLC requirement or requirement collection resource object, specified as an
oslc.rm.Requirement or oslc.rm.RequirementCollection object.

Output Arguments
URLs — OSLC resource URLs for linked resources
cell array

OSLC resource URLs for resources linked to the requirement or requirement collection resource,
returned as a cell array.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection | addLink |
removeLink | getRequirementLinks

 getLinks

1-133

slreq.getNavigationFcn
Get registered navigation function for referenced requirements

Syntax
callbackFunction = slreq.getNavigationFcn(domain)

Description
callbackFunction = slreq.getNavigationFcn(domain) returns the navigation callback
function name registered for imported referenced requirements that have the Domain property value
equal to domain.

Examples

Register and Get a Navigation Callback Function for Referenced Requirements Imported
from ReqIF Files

This example shows how to register and get the registered navigation callback function for
referenced requirements imported from ReqIF™ files.

Import the ReqIF file mySpec.reqif into Requirements Toolbox™.

count = slreq.import("mySpec.reqif");

Get the handle for the imported requirement set. Check the domain for the imported referenced
requirements.

rs = slreq.find("Type","ReqSet","Name","mySpec");
topRef = children(rs);
domain = topRef.Domain

domain =
'Third-Party Tool'

Check if there are any currently registered navigation callback functions for the domain.

callback = slreq.getNavigationFcn(domain)

callback =

 0x0 empty char array

Register the custom navigation callback function myNavigationFcn for the domain. Confirm that
the navigation callback function was registered.

slreq.registerNavigationFcn(domain,"myNavigationFunction")
callback = slreq.getNavigationFcn(domain)

callback =
'myNavigationFunction'

1 Functions

1-134

Cleanup

Clear the open requirement sets without saving. Unregister the custom navigation callback function.

slreq.clear;
slreq.registerNavigationFcn(domain,'');

Input Arguments
domain — Third-party requirements tool domain
string scalar | character vector

Third-party requirements tool domain for which to get the registered the navigation callback
function, specified as a string scalar.

Output Arguments
callbackFunction — Registered navigation callback function name
character vector

Registered navigation callback function name, returned as a character vector.

Tips
• You can get the value of the Domain property for a referenced requirement at the MATLAB

command prompt by entering:

domain = myReferencedRequirement.Domain

domain =

 'Third-Party Tool'

Version History
Introduced in R2019a

See Also
slreq.registerNavigationFcn | slreq.Reference | Requirements Editor

Topics
“Navigate from Referenced Requirements to Requirements in Third-Party Applications”

 slreq.getNavigationFcn

1-135

getProducedTestExecutionRecord
Package: oslc.qm

Get locally stored test execution record traceability link from Open Services for Lifecycle
Collaboration (OSLC) test result resource object

Syntax
executionURL = getProducedTestExecutionRecord(myTR)

Description
executionURL = getProducedTestExecutionRecord(myTR) returns the rdf:resource
attribute of the RDF/XML element oslc_qm:producedByTestExecutionRecord for the test result
myTR. For more information about RDF/XML elements, see An XML Syntax for RDF on the World
Wide Web Consortium website and QM Resource Definitions on the Open Services for Lifecycle
Collaboration (OSLC) website.

Examples

Get Test Resources Associated with Test Result

This example shows how to get the OSLC test execution record resource URL that produced the test
result and the test case resource URL that the test result reports on.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test result resource type. Query the service provider for existing test results.

myQueryCapability = getQueryService(myClient,'TestResult');
testResults = queryTestResults(myQueryCapability)

testResults =

 1×9 TestResult array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Retrieve the test execution record resource URL for the test execution record that produced the test
result.

terURL = getProducedTestExecutionRecord(myTR)

terURL =

 1×1 cell array

1 Functions

1-136

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions

 {'https://localhost:9443/qm/_CfkIoWYpEeuAF8ZpKyQQtg'}

Retrieve the test case resource URL for the test case that the test result reports on.

testCaseURL = getReportsOnTestCase(myTR)

testCaseURL =

 1×1 cell array

 {'https://localhost:9443/qm/_ibz6tGWYEeuAF8ZpKyQQtg'}

Input Arguments
myTR — Test result resource
oslc.qm.TestResult object

OSLC test result resource, specified as an oslc.qm.TestResult object.

Output Arguments
executionURL — Test execution record resource URL
cell array

OSLC test execution record resource URL, returned as a cell array.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.qm.TestResult | createTestResult | oslc.qm.TestExecutionRecord

External Websites
The OSLC Quality Management (QM) Vocabulary

 getProducedTestExecutionRecord

1-137

https://archive.open-services.net/pub/Main/QmVocabulary/qm.html

getProperty
Package: oslc.rm

Get local contents of text property from OSLC resource object

Syntax
textContents = getProperty(resource,propertyName)

Description
textContents = getProperty(resource,propertyName) returns the text contents of the
RDF/XML element with the name propertyName from the locally stored RDF/XML data for the Open
Services for Lifecycle Collaboration (OSLC) resource specified by resource. For more information
about RDF/XML elements, see An XML Syntax for RDF on the World Wide Web Consortium website.

Examples

Add, Get, and Remove Properties from OSLC Resources

This example shows how to add, get, and remove properties from an existing OSLC requirement
resource.

Create and configure the OSLC client myClient as described in “Create and Configure an OSLC
Client for the Requirements Management Domain” on page 2-3. Then query the service provider
for requirements and assign an oslc.rm.Requirement object to the variable myReq as described in
“Submit a Query Request with Query Capability” on page 1-209.

Retrieve the full resource data from the service provider for the requirement resource myReq.

status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

The requirement myReq has a linked requirement with an implementedBy relationship. Get the
rdf:resource value for the oslc_rm:implementedBy property for the requirement resource
myReq.

linkedReq = getResourceProperty(myReq,'oslc_rm:implementedBy')

linkedReq =

 1×1 cell array

 {'https://localhost:9443/rm/resources/_72lxMWJREeup0...'}

1 Functions

1-138

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax

Change the relationship between the linked requirement and myReq from implementedBy to
decomposedBy. Remove the oslc_rm:implementedBy property and add an
oslc_rm:decomposedBy property.

removeResourceProperty(myReq,'oslc_rm:implementedBy',linkedReq)
addResourceProperty(myReq,'oslc_rm:decomposedBy',linkedReq)

Get the text contents for the dcterms:title property.

title = getProperty(myReq,'dcterms:title')

title =

 'My New Requirement'

Change the title to My New Requirement (Edited). Confirm the changes.

setProperty(myReq,'dcterms:title','My New Requirement (Edited)')
title = getProperty(myReq,'dcterms:title')

title =

 'My New Requirement (Edited)'

Add a new text property to the requirement with the tag dcterms:description. Confirm the
changes.

addTextProperty(myReq,'dcterms:description', ...
 'My new requirement edited using the MATLAB OSLC client.');
desc = getProperty(myReq,'dcterms:description')

desc =

 'My new requirement created using the MATLAB OSLC client.'

Commit the changes to the service provider.

status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

View the resource that you edited in the system browser.

show(myReq)

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

 getProperty

1-139

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

propertyName — OSLC resource property name
character vector

OSLC resource property name, specified as a character vector.

Output Arguments
textContents — OSLC resource property text contents
character vector

OSLC resource text contents, returned as a character vector.

Tips
• For information about OSLC resource properties, see these pages on the OSLC website:

• RM Resource Definitions
• QM Resource Definitions
• CM Resource Definitions

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | addTextProperty |
setProperty

External Websites
RDF 1.1 XML Syntax

1 Functions

1-140

https://archive.open-services.net/bin/view/Main/RmSpecificationV2.html#RM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/CmSpecificationV2.html#CM_Resource_Definitions
https://www.w3.org/TR/rdf-syntax-grammar/

getQueryService
Package: oslc

Get OSLC query service object

Syntax
myQueryCapability = getQueryService(myClient)
myQueryCapability = getQueryService(myClient,resourceType)

Description
myQueryCapability = getQueryService(myClient) returns all available query capabilities for
the OSLC client myClient.

Tip Use this syntax to create query services with resource types that are not defined in the OSLC
standard.

myQueryCapability = getQueryService(myClient,resourceType) returns a query
capability for the resource type specified by resourceType for the OSLC client myClient.

Examples

Create All Available Query Capabilities for a Given Client

This example shows how to create all available query capabilities for a configured OSLC client.

After you have created and configured an OSLC client as described in “Create and Configure an
OSLC Client for the Requirements Management Domain” on page 2-3, create all available query
capabilities for the client myClient.

myQueryCapability = getQueryService(myClient)

myQueryCapability =

 1×4 QueryCapability array with properties:

 queryParameter
 client
 queryBase
 resourceShape
 title
 resourceType

Examine the query capability resourceType to determine which query capability you want to use.

myQueryCapability(3).resourceType(2)

ans =

 getQueryService

1-141

 1×1 cell array

 {'http://open-services.net/ns/rm#Requirement'}

Submit a Query Request with Query Capability

This example shows how to submit a query request with a configured OSLC client.

After you have created and configured an OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type.

myQueryCapability = getQueryService(myClient,'Requirement')

myQueryCapability =

 QueryCapability with properties:

 queryParameter: ''
 client: [1×1 oslc.Client]
 queryBase: 'https://localhost:9443/rm/views?oslc.query=true&projectURL=http...'
 resourceShape: {0×1 cell}
 title: 'Query Capability'
 resourceType: {1×2 cell}

Submit a query request to the service provider for the available requirement resources.

reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign the first returned requirement resource to the variable myReq, then fetch the full resource
properties for myReq. Examine the Title property.

myReq = reqs(1);
status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

title = myReq.Title

1 Functions

1-142

title =

 'Requirement 1'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

resourceType — OSLC resource type
'Requirement' | 'RequirementCollection' | 'TestCase' | 'TestExecutionRecord' |
'TestPlan' | 'TestResult' | 'TestScript' | 'ChangeRequest'

OSLC resource type, specified as character array with one of these values:

• 'ChangeRequest'
• 'TestCase'
• 'TestExecutionRecord'
• 'TestPlan'
• 'TestResult'
• 'TestScript'
• 'Requirement'
• 'RequirementCollection'

The specified resource type must match the domain for the configured oslc.Client object.

Output Arguments
myQueryCapability — Resource query capability
oslc.core.QueryCapability object

OSLC resource query capability, specified as an oslc.core.QueryCapability object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.QueryCapability | oslc.rm.Requirement |
oslc.cm.ChangeRequest | oslc.qm.TestCase

 getQueryService

1-143

getRDF
Package: oslc.rm

Get resource RDF/XML data from OSLC resource object

Syntax
rdfContent = getRDF(resource)

Description
rdfContent = getRDF(resource) returns the locally stored RDF/XML data for the resource
specified by resource. For more information, see RDF classes and properties in OSLC on the Open
Services for Lifecycle Collaboration (OSLC) website.

Examples

Get and Set RDF Content for Requirement Resource

This example shows how to get and set the RDF content of an OSLC requirement resource with a
configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type.

myQueryCapability = getQueryService(myClient);

Submit a query request to the service provider for the available requirement resources.

reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Fetch the full resource properties for a single requirement resource. Inspect the title of the
requirement.

myReq = reqs(1);
status = fetch(myReq,myClient)

status =

 StatusCode enumeration

1 Functions

1-144

https://open-services.net/resources/oslc-primer/#rdf-classes-and-properties-in-oslc

 OK

title = myReq.Title

title =

 'My New Requirement'

Get the locally stored RDF content of the requirement resource.

rdfContent = getRDF(myReq)

rdfContent =

 '<?xml version="1.0" encoding="UTF-8" standalone="no" ?><rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:oslc_rm="http://open-services.net/ns/rm#">
 <oslc_rm:Requirement>
 <dcterms:title>My New
Requirement</dcterms:title><oslc:instanceShape
rdf:resource="https://example.com/shapes/oslc-requirement-version1"/>
</oslc_rm:Requirement>
 </rdf:RDF>'

Copy and paste the rdfContent text into a new variable newRDF. Edit the text contents for the
dcterms:title property to My New Requirement (Edited).

newRDF = ['<?xml version="1.0" encoding="UTF-8" ' ...
'standalone="no" ?><rdf:RDF ' ...
'xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" ' ...
'xmlns:dcterms="http://purl.org/dc/terms/" ' ...
'xmlns:oslc="http://open-services.net/ns/core#" ' ...
'xmlns:oslc_rm="http://open-services.net/ns/rm#">' ...
'<oslc_rm:Requirement><dcterms:title>' ...
'My New Requirement (Edited)</dcterms:title>' ...
'<oslc:instanceShape rdf:resource=' ...
'"https://example.com/shapes/oslc-requirement-version1"/>' ...
'</oslc_rm:Requirement></rdf:RDF>']

Set the RDF content of the requirement to the variable newRDF. Inspect the requirement title.

setRDF(myReq,newRDF);
title = myReq.Title

title =

 'My New Requirement (Edited)'

Commit the changes to the service provider.

status = commit(newReq,myClient)

status =

 StatusCode enumeration

 getRDF

1-145

 OK

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

Output Arguments
rdfContent — RDF resource data
character vector

RDF data for the OSLC resource, returned as a character vector.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | setRDF

External Websites
RDF 1.1 XML Syntax

1 Functions

1-146

https://www.w3.org/TR/rdf-syntax-grammar/

slreq.getReportOptions
Get default report generation options

Syntax
myOptions = slreq.getReportOptions()

Description
myOptions = slreq.getReportOptions() returns a structure with the default options for
generating reports for requirements sets.

Examples
Get Report Generation Options

myOptions = slreq.getReportOptions()

myOptions =

 struct with fields:

 reportPath: 'L:\slreqrpt_20170826.docx'
 openReport: 1
 titleText: ''
 authors: 'Jane Doe'
 includes: [1×1 struct]

Output Arguments
myOptions — Report generation options
structure

Options for report generation, returned as a structure with the following fields:

 slreq.getReportOptions

1-147

Options

Fields Data Type Description
reportPath character vector Report file path
openReport Boolean Option to open report

automatically after generation
titleText character vector Report title
authors character vector Report authors
includes.toc Boolean Option to include table of

contents in your report
includes.publishedDate Boolean Option to include the report

publish date
includes.revision Boolean Option to include requirement

revision information in your
report

includes.properties Boolean Option to include requirement
properties

includes.links Boolean Option to include requirements
links in your report

includes.changeInformati
on

Boolean Option to include change
information such as change
issues

includes.groupLinksBy character vector Option to group links by
Artifact or LinkType

includes.keywords Boolean Option to include requirement
implementation status data in
your report

includes.comments Boolean Option to include requirement
comments in your report

includes.implementationS
tatus

Boolean Option to include requirement
implementation status data in
your report

includes.verificationSta
tus

Boolean Option to include requirement
verification status data in your
report

includes.emptySections Boolean Option to include empty
sections in your report

includes.rationale Boolean Option to include requirements
rationale in your report

includes.customAttribute
s

Boolean Option to include requirement
set custom attributes in your
report

1 Functions

1-148

Version History
Introduced in R2018a

See Also
slreq.generateReport

 slreq.getReportOptions

1-149

getReportsOnTestCase
Package: oslc.qm

Get locally stored test case traceability link from OSLC test result resource object

Syntax
testCaseURL = getReportsOnTestCase(myTR)

Description
testCaseURL = getReportsOnTestCase(myTR) returns the rdf:resource attribute of the
RDF/XML element oslc_qm:reportsOnTestCase for the test result myTR. For more information
about RDF/XML elements, see An XML Syntax for RDF on the World Wide Web Consortium website
and QM Resource Definitions on the Open Services for Lifecycle Collaboration (OSLC) website.

Examples

Get Test Resources Associated with Test Result

This example shows how to get the OSLC test execution record resource URL that produced the test
result and the test case resource URL that the test result reports on.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test result resource type. Query the service provider for existing test results.

myQueryCapability = getQueryService(myClient,'TestResult');
testResults = queryTestResults(myQueryCapability)

testResults =

 1×9 TestResult array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Retrieve the test execution record resource URL for the test execution record that produced the test
result.

terURL = getProducedTestExecutionRecord(myTR)

terURL =

 1×1 cell array

 {'https://localhost:9443/qm/_CfkIoWYpEeuAF8ZpKyQQtg'}

1 Functions

1-150

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions

Retrieve the test case resource URL for the test case that the test result reports on.

testCaseURL = getReportsOnTestCase(myTR)

testCaseURL =

 1×1 cell array

 {'https://localhost:9443/qm/_ibz6tGWYEeuAF8ZpKyQQtg'}

Input Arguments
myTR — Test result resource
oslc.qm.TestResult object

OSLC test result resource, specified as an oslc.qm.TestResult object.

Output Arguments
testCaseURL — Associated test case resource URL
cell array

Resource URL of the test case that the test result reports on, returned as a cell array.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.qm.TestResult | createTestResult | oslc.qm.TestCase

External Websites
The OSLC Quality Management (QM) Vocabulary

 getReportsOnTestCase

1-151

https://archive.open-services.net/pub/Main/QmVocabulary/qm.html

getRequirementLinks
Package: oslc.qm

Get locally stored requirement traceability links from OSLC test resource object

Syntax
reqs = getRequirementLinks(testResource)

Description
reqs = getRequirementLinks(testResource) returns the requirement resource associated
with the rdf:resource attribute of the RDF/XML element oslc_qm:validatesRequirement for
the test case or test script specified by testResource. For more information about RDF/XML
elements, see An XML Syntax for RDF on the World Wide Web Consortium website and QM Resource
Definitions on the Open Services for Lifecycle Collaboration (OSLC) website.

Examples

Add, Get, and Remove Traceability Links from a Test Case to a Requirement

This example shows how to add, remove, and get OSLC requirement resources linked to a test case
resource with a previously configured OSLC client.

After you have created and configured an OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test case resource type.

myQueryCapability = getQueryService(myClient,'TestCase');

Submit a query request to the service provider for the available test case resources.

testCases = queryTestCases(myQueryCapability)

testCases =

 1×5 TestCase array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Retrieve the requirement resources linked to one of the test cases. Fetch the resource properties
from the service provider for the test case.

myTestCase = testCases(1);
fetch(myTestCase,myClient);
reqs = getRequirementLinks(myTestCase)

1 Functions

1-152

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions

reqs =

 Requirement with properties:

 ResourceUrl: 'https://localhost:9443/rm/resources/_aQ1gRg8bEeuLWbFe'
 Dirty: 1
 IsFetched: 0
 Title: ''
 Identifier: ''

Remove the existing link to the requirement resource from the test case resource. Commit the
changes to the service provider.

removeRequirementLink(myTestCase,reqs.ResourceUrl);
status = commit(myTestCase,myClient)

status =

 StatusCode enumeration

 OK

To add a link to a requirement, in the OSLC service provider, locate the requirement resource that
you want to link to the test case resource. Identify the resource URL. Create a variable URL and set
the value of the variable to the requirement URL that you found in the service provider.

URL = 'https://localhost:9443/rm/resources/_oJNtgWrqEeup0a6t';

Create a traceability link between the requirement resource and the test case. Commit the change to
the service provider.

addRequirementLink(myTestCase,URL);
status = commit(myTestCase,myClient)

status =

 StatusCode enumeration

 OK

View the test case in the system browser.

show(myTestCase)

Input Arguments
testResource — OSLC test resource
oslc.qm.TestCase object | oslc.qm.TestScript object

OSLC test resource, specified as an oslc.qm.TestCase or oslc.qm.TestScript object.

Output Arguments
reqs — OSLC requirement resource
oslc.rm.Requirement object | oslc.rm.RequirementCollection object

 getRequirementLinks

1-153

OSLC requirement or requirement collection resource object, returned as an
oslc.rm.Requirement or oslc.rm.RequirementCollection object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.qm.TestCase | oslc.qm.TestScript |
oslc.rm.RequirementCollection | addRequirementLink | removeRequirementLink

1 Functions

1-154

getRequirementRows
Package: slreq.modeling

Retrieve requirements in Requirements Table block

Syntax
RequirementRows = getRequirementRows(reqTable)

Description
RequirementRows = getRequirementRows(reqTable) returns the requirements of the
Requirements Table block specified by reqTable.

Examples

Retrieve Requirements from a Requirements Table Block

Retrieve the RequirementsTable object from a model named myModel.

table = slreq.modeling.find("myModel");

Retrieve the requirements as an array of RequirementRow objects.

row = getRequirementRows(table);

Input Arguments
reqTable — Requirements Table block
RequirementsTable object

Requirements Table block, specified as a RequirementsTable object.

Output Arguments
RequirementRows — Requirements
array of RequirementRow objects

Requirements in the Requirements Table block, returned as an array of RequirementRow objects.

Version History
Introduced in R2022a

See Also
Blocks
Requirements Table

 getRequirementRows

1-155

Functions
addRequirementRow

Objects
RequirementsTable | RequirementRow

1 Functions

1-156

getResourceProperty
Package: oslc.rm

Get local contents of resource property from OSLC resource object

Syntax
rdfResource = getResourceProperty(resource,propertyName)

Description
rdfResource = getResourceProperty(resource,propertyName) returns the rdf:resource
attribute of the RDF/XML element with name propertyName from the locally stored RDF/XML for
the Open Services for Lifecycle Collaboration (OSLC) resource specified by resource. For more
information about RDF/XML elements, see An XML Syntax for RDF on the World Wide Web
Consortium website.

Examples

Add, Get, and Remove Properties from OSLC Resources

This example shows how to add, get, and remove properties from an existing OSLC requirement
resource.

Create and configure the OSLC client myClient as described in “Create and Configure an OSLC
Client for the Requirements Management Domain” on page 2-3. Then query the service provider
for requirements and assign an oslc.rm.Requirement object to the variable myReq as described in
“Submit a Query Request with Query Capability” on page 1-209.

Retrieve the full resource data from the service provider for the requirement resource myReq.

status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

The requirement myReq has a linked requirement with an implementedBy relationship. Get the
rdf:resource value for the oslc_rm:implementedBy property for the requirement resource
myReq.

linkedReq = getResourceProperty(myReq,'oslc_rm:implementedBy')

linkedReq =

 1×1 cell array

 {'https://localhost:9443/rm/resources/_72lxMWJREeup0...'}

 getResourceProperty

1-157

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax

Change the relationship between the linked requirement and myReq from implementedBy to
decomposedBy. Remove the oslc_rm:implementedBy property and add an
oslc_rm:decomposedBy property.

removeResourceProperty(myReq,'oslc_rm:implementedBy',linkedReq)
addResourceProperty(myReq,'oslc_rm:decomposedBy',linkedReq)

Get the text contents for the dcterms:title property.

title = getProperty(myReq,'dcterms:title')

title =

 'My New Requirement'

Change the title to My New Requirement (Edited). Confirm the changes.

setProperty(myReq,'dcterms:title','My New Requirement (Edited)')
title = getProperty(myReq,'dcterms:title')

title =

 'My New Requirement (Edited)'

Add a new text property to the requirement with the tag dcterms:description. Confirm the
changes.

addTextProperty(myReq,'dcterms:description', ...
 'My new requirement edited using the MATLAB OSLC client.');
desc = getProperty(myReq,'dcterms:description')

desc =

 'My new requirement created using the MATLAB OSLC client.'

Commit the changes to the service provider.

status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

View the resource that you edited in the system browser.

show(myReq)

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

1 Functions

1-158

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

propertyName — OSLC resource property name
character vector

OSLC resource property name, specified as a character vector.

Output Arguments
rdfResource — OSLC resource property rdf:resource attribute
cell array

OSLC resource property rdf:resource attribute, returned as a cell array.

Tips
• For information about OSLC resource properties see these pages on the OSLC website:

• RM Resource Definitions
• QM Resource Definitions
• CM Resource Definitions

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | addResourceProperty |
removeResourceProperty

External Websites
RDF 1.1 XML Syntax

 getResourceProperty

1-159

https://archive.open-services.net/bin/view/Main/RmSpecificationV2.html#RM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/CmSpecificationV2.html#CM_Resource_Definitions
https://www.w3.org/TR/rdf-syntax-grammar/

getRunsTestCase
Package: oslc.qm

Get locally stored test case traceability link from OSLC test execution record resource object

Syntax
testCaseURL = getRunsTestCase(myTER)

Description
testCaseURL = getRunsTestCase(myTER) returns the rdf:resource attribute of the RDF/XML
element oslc_qm:runsTestCase for the test execution record myTER. For more information about
RDF/XML elements, see An XML Syntax for RDF on the World Wide Web Consortium website and QM
Resource Definitions on the Open Services for Lifecycle Collaboration (OSLC) website.

Examples

Get Test Case URL Associated with Test Execution Record

This example shows how to get the test case resource URL for the test case run by a test execution
resource with a configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test execution record resource type. Query the service provide for existing test
execution records.

myQueryCapability = getQueryService(myClient,'TestExecutionRecord');
TERs = queryTestExecutionRecords(myQueryCapability)

TERs =

 1×2 TestExecutionRecord array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Retrieve a test case resource URL run by one of the test execution records.

myTER = TERs(1);
testCaseURL = getRunsTestCase(myTER)

testCaseURL =

 1×1 cell array

1 Functions

1-160

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions

 {'https://localhost:9443/qm/resources/_NMg4MWJzEeuAF8ZpKyQQtg'}

Input Arguments
myTER — Test execution record resource
oslc.qm.TestExecutionRecord object

OSLC test execution record resource, specified as an oslc.qm.TestExecutionRecord object.

Output Arguments
testCaseURL — Associated test case resource URL
cell array

Resource URL of the test case that the test execution record runs, returned as a cell array.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.qm.TestCase | createTestExecutionRecord |
oslc.qm.TestExecutionRecord

External Websites
The OSLC Quality Management (QM) Vocabulary

 getRunsTestCase

1-161

https://archive.open-services.net/pub/Main/QmVocabulary/qm.html

getServer
Package: oslc

Get server URL for OSLC client

Syntax
myServerURL = getServer(myClient)

Description
myServerURL = getServer(myClient) returns the server URL for the configured OSLC client
myClient.

Examples

Get Server URL for an OSLC Client

This example shows how to get the server URL for an OSLC client created in MATLAB and configure
the client to connect to an OSLC service provider for the requirements management domain.

After you have created and configured an OSLC client as described in “Create and Configure an
OSLC Client for the Requirements Management Domain” on page 2-3, get the server URL for the
OSLC client myClient.

mySeverURL = getServer(myClient)

myServerURL =

 'https://localhost:9443'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

Output Arguments
myServerURL — Server URL for OSLC client
character vector

Server URL for OSLC client, returned as a character vector.
Example: 'https://localhost:9443'

1 Functions

1-162

Version History
Introduced in R2021a

See Also
oslc.Client | setServer

 getServer

1-163

getServiceProviderNames
Package: oslc

Get service providers for OSLC client

Syntax
providerNames = getServiceProviderNames(myClient)

Description
providerNames = getServiceProviderNames(myClient) returns the service providers for the
configured OSLC client myClient.

Examples

Create and Configure an OSLC Client for the Requirements Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the requirements management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Then set the service root and catalog path for
the requirements management domain and the configuration query path.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'/oslc_rm/catalog');
setConfigurationQueryPath(myClient,'gc/oslc-query/configurations');
myClient

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

providers =

 4×1 cell array

 {'OSLC Plugin' }
 {'Model Based Design with OSLC' }
 {'OSLC4RM' }
 {'Interactive Testing (Requirements Management)'}

1 Functions

1-164

setServiceProvider(myClient,'OSLC Plugin');

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/rm/oslc_rm/catalog'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

Output Arguments
providerNames — Service providers for OSLC client
cell array

Names of the available service providers for the OSLC client, returned as a cell array.

Version History
Introduced in R2021a

See Also
oslc.Client | getConfigurationContextNames | setConfigurationContext | login |
setServiceProvider | setConfigurationQueryPath

 getServiceProviderNames

1-165

getSLRequirements
Package: oslc.rm

Get imported referenced requirement associated with OSLC requirement resource object

Syntax
ref = getSLRequirements(reqResource)

Description
ref = getSLRequirements(reqResource) returns the imported referenced requirement
associated with the OSLC requirement or requirement collection resource reqResource.

Examples

Get Imported Referenced Requirement for OSLC Requirement

This example shows how to get the referenced requirement that was imported from IBM DOORS
Next that is associated with the OSLC requirement resource in the same project in DOORS Next.

Import requirements from IBM DOORS Next. For more information, see “Import Requirements from
IBM DOORS Next”.

Create and configure an OSLC client myClient as described in “Create and Configure an OSLC
Client for the Requirements Management Domain” on page 2-3. When setting the service provider
and configuration context, use the same settings that you used when importing the requirements.

Create a creation factory for the requirement resource type. Query the service provider for
requirements. Submit a query request to the service provider for the available requirement
resources.

myCreationFactory = getCreationFactory(myClient,'Requirement');
reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign one of the requirements to the variable myReq. Retrieve the full resource data from the
service provider for the requirement resource.

myReq = reqs(1);
status = fetch(myReq,myClient)

1 Functions

1-166

status =

 StatusCode enumeration

 OK

Get the imported referenced requirement associated with myReq.

ref = getSLRequirements(myReq)

ref =

 Reference with properties:

 Id: '431'
 CustomId: '431'
 Artifact: 'https://localhost:9443/rm/_BCoGwgJZEeuFW5Ss3RBk7w'
 ArtifactId: 'https://localhost:9443/rm/_BDSOEwJZEeuFW5Ss3RBk7w'
 Domain: 'OSLC'
 UpdatedOn: 17-Feb-2021 13:54:13
 CreatedOn: 29-Sep-2020 09:38:16
 CreatedBy: ''
 ModifiedBy: ''
 IsLocked: 1
 Summary: 'System Hazards'
 Description: 'System Hazards'
 Rationale: ''
 Keywords: {}
 Type: 'Functional'
 SID: 431
 FileRevision: 1
 ModifiedOn: 29-Sep-2020 09:38:16
 Dirty: 0
 Comments: [0×0 struct]
 Index: '1'

Input Arguments
reqResource — OSLC requirement resource
oslc.rm.Requirement object | oslc.rm.RequirementCollection object

OSLC requirement or requirement collection resource object, specified as an
oslc.rm.Requirement or oslc.rm.RequirementCollection object.

Output Arguments
ref — Referenced requirement
slreq.Reference

Referenced requirement, returned as an slreq.Reference object.

Version History
Introduced in R2021a

 getSLRequirements

1-167

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
slreq.Reference | getLinks | getRequirementLinks

Topics
“Link and Trace Requirements with IBM DOORS Next”

1 Functions

1-168

getStatus
Package: oslc.qm

Get locally stored status from OSLC test result resource object

Syntax
status = getStatus(myTR)

Description
status = getStatus(myTR) returns the text contents of the RDF/XML element oslc_qm:status
for the test result myTR. For more information about RDF/XML elements, see An XML Syntax for RDF
on the World Wide Web Consortium website and QM Resource Definitions on the Open Services for
Lifecycle Collaboration (OSLC) website.

Examples

Get Test Result Status

This example shows how to get the OSLC test result status.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test result resource type. Query the service provide for existing test results.

myQueryCapability = getQueryService(myClient,'TestResult');
testResults = queryTestResults(myQueryCapability)

testResults =

 1×9 TestResult array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Retrieve the test result status for one of the test results.

myTR = testResults(1);
status = getStatus(myTR)

 getStatus

1-169

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions

status =

 'example.qm.execution.state.passed'

Input Arguments
myTR — Test result resource
oslc.qm.TestResult object

OSLC test result resource, specified as an oslc.qm.TestResult object.

Output Arguments
status — Test result resource status
character vector

OSLC test result resource status, returned as a character vector.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.qm.TestResult | createTestResult

External Websites
The OSLC Quality Management (QM) Vocabulary

1 Functions

1-170

https://archive.open-services.net/pub/Main/QmVocabulary/qm.html

slreq.getTraceabilityMatrixOptions
Create options structure for traceability matrix

Syntax
opts = slreq.getTraceabilityMatrixOptions
opts = slreq.getTraceabilityMatrixOptions('current')

Description
opts = slreq.getTraceabilityMatrixOptions creates an empty traceability matrix options
structure.

opts = slreq.getTraceabilityMatrixOptions('current') creates a traceability matrix
options structure containing the artifacts from the selected tab in the Traceability Matrix window.

Examples

Programmatically Generate a Traceability Matrix

This example shows how to create an options structure for a traceability matrix, then generate a
matrix using those options.

Open the Requirements Definition for a Cruise Control Model project.

slreqCCProjectStart;

Create an options structure for a traceability matrix.

opts = slreq.getTraceabilityMatrixOptions;

Set the leftArtifacts and topArtifacts fields of opts. Enter a cell array containing the name
of the artifacts that you want to use in your traceability matrix.

opts.leftArtifacts = {'crs_req.slreqx','crs_req_func_spec.slreqx'};
opts.topArtifacts = {'crs_plant.slx', 'crs_controller.slx','DriverSwRequest_Tests.mldatx'};

Generate the traceability matrix with the artifacts specified by opts.

slreq.generateTraceabilityMatrix(opts)

Cleanup

Clear the open requirement sets and link sets, and close the Traceability Matrix window.

slreq.clear;

 slreq.getTraceabilityMatrixOptions

1-171

Get Artifacts from the Selected Traceability Matrix

This example shows how to get the artifacts from the selected tab in the Traceability Matrix window,
then re-generate the matrix.

Setup

Open the Requirements Definition for a Cruise Control Model project.

slreqCCProjectStart;

Load the crs_controller model, then open the Traceability Matrix window.

load_system('crs_controller');
slreq.generateTraceabilityMatrix;

Create the Traceability Matrix

1 In the Traceability Matrix window, in the Select Artifacts dialog, set Left to
crs_req_func.slreqx and Top to crs_controller.slx.

2 Click Generate Matrix.

Get Artifacts from the Traceability Matrix

Without closing the Traceability Matrix window, get the artifacts that were used to generate the
matrix.

opts = slreq.getTraceabilityMatrixOptions('current')

opts = struct with fields:
 leftArtifacts: {'C:\Users\jdoe\MATLAB\Projects\examples\CruiseRequirementsExample\documents\crs_req_func_spec.slreqx'}
 topArtifacts: {'C:\Users\jdoe\MATLAB\Projects\examples\CruiseRequirementsExample\models\crs_controller.slx'}

Close the Traceability Matrix window. Re-generate the matrix with the artifacts specified by opts.

slreq.generateTraceabilityMatrix(opts)

Cleanup

Clear the open requirement sets and link sets, and close the Traceability Matrix window.

slreq.clear;

Output Arguments
opts — Traceability matrix options
struct

Traceability matrix options, specified as a struct with these fields:

• leftArtifacts
• topArtifacts

1 Functions

1-172

Version History
Introduced in R2021a

See Also
slreq.generateTraceabilityMatrix

Topics
“Track Requirement Links with a Traceability Matrix”

 slreq.getTraceabilityMatrixOptions

1-173

slreq.getTextRange, slreq.getTextRanges
Package: slreq

Get line ranges

Syntax
lr = slreq.getTextRange(fileName,lines)
lr = slreq.getTextRange(fileName,blockSID,lines)
lr = slreq.getTextRanges(___)
lr = slreq.getTextRange(fileName,ID)

Description
lr = slreq.getTextRange(fileName,lines) returns the line ranges associated with the lines
of code, lines, in the file specified by fileName.

Note You must open the file in the MATLAB Editor before using this function.

lr = slreq.getTextRange(fileName,blockSID,lines) returns the line ranges associated
with the lines in the MATLAB Function block specified by blockSID.

Note You must open the model in Simulink before using this function.

lr = slreq.getTextRanges(___) is an alternative way to execute slreq.getTextRange.

lr = slreq.getTextRange(fileName,ID) returns the line range associated with the ID
specified by ID. slreq.getTextRanges does not work for this syntax.

Examples

Modify Line Numbers for Line Ranges

This example shows how to modify line numbers for an slreq.TextRange object.

Open the myAdd code file.

file = "myAdd.m";
open(file);

Get the slreq.TextRange object associated with the third line in the myAdd function.

cr = slreq.getTextRange(file,3);

Get the line numbers associated with the slreq.TextRange object.

lines = getLineRange(cr)

1 Functions

1-174

lines = 1×2

 3 3

Associate the slreq.TextRange object with the function definition line.

setLineRange(cr,1)

Confirm that the slreq.TextRange object is associated with the function definition line by getting
the text contents of the line range.

text = getText(cr)

text =
'function y = myAdd(u,v)'

Get Line Ranges in MATLAB Function Blocks

This example shows how to get slreq.TextRange objects in MATLAB Function blocks.

Open the myAddModel Simulink® model.

model = "myAddModel";
open_system(model);

Get the SID of the MATLAB Function block and return it as a string.

block = "myAddModel/MATLAB Function";
SID = get_param(block,"SID")

SID =
'8'

Get the slreq.TextRange object associated with the first line of the MATLAB Function block.

cr = slreq.getTextRange(model,SID,1);

Get Line Ranges by ID

This example shows how to get slreq.TextRange objects by using the value of the ID property.

Open the myAdd code file.

file = "myAdd.m";
open(file);

Get the slreq.TextRange object associated with the ID 738659.742.1.

cr = slreq.getTextRange(file,"738659.742.1");

 slreq.getTextRange, slreq.getTextRanges

1-175

Input Arguments
fileName — File name
string scalar | character vector

Name of the file containing the lines of code, specified as a string scalar or character vector.
Example: "myAdd.m","vdp.slx"

lines — Start and end line numbers
scalar double | double array

Start and end line numbers for the line range, specified as a double array of the form [start end]
or a scalar double.
Example: [1 4], 1

blockSID — MATLAB Function block SID
string scalar | character vector

MATLAB Function block SID, specified as a string scalar or character vector.
Example: "30"

ID — Line range ID
string scalar | character vector

Line range ID, specified as a string scalar or character vector. The ID is the “Id” on page 7-0
property of the object.
Example: "738659.742.1"

Output Arguments
lr — Line range
slreq.TextRange array

Line range, returned as an array of slreq.TextRange objects.

Tips
• You can also use slreq.LinkSet.getTextRange to get code range objects.

Version History
Introduced in R2022b

See Also
slreq.TextRange | slreq.createTextRange | slreq.LinkSet.getTextRange

Topics
“Requirements Traceability for MATLAB Code”

1 Functions

1-176

getUser
Package: oslc

Get user for OSLC client

Syntax
user = getUser(myClient)

Description
user = getUser(myClient) returns the configured user for the OSLC client myClient.

Examples

Get User for an OSLC Client

This example shows how to get the user for an OSLC client created in MATLAB and configure the
client to connect to an OSLC service provider for the requirements management domain.

After you have created and configured an OSLC client as described in “Create and Configure an
OSLC Client for the Requirements Management Domain” on page 2-3, get the user for the OSLC
client myClient.

user = getUser(myClient)

user =

 'jdoe'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

Output Arguments
user — User for OSLC client
character vector

User for the OSLC client, returned as a character vector.

Version History
Introduced in R2021a

 getUser

1-177

See Also
oslc.Client | setUser | login

1 Functions

1-178

hideAssumptionColumn
Package: slreq.modeling

Hide Precondition column in Assumptions tab

Syntax
hideAssumptionColumn(reqTable)

Description
hideAssumptionColumn(reqTable) hides the Precondition column in the Assumptions tab of
the Requirements Table block, reqTable. The Precondition column must be empty.

Examples

Hide the Precondition Column in a Requirements Table Block

Find the Requirements Table block in a model by using slreq.modeling.find.

reqTable = slreq.modeling.find("myModel");

Hide the Precondition column in the Assumptions tab.

hideAssumptionColumn(reqTable);

Input Arguments
reqTable — Requirements Table block
RequirementsTable object

Requirements Table block, specified as a RequirementsTable object.

Version History
Introduced in R2022a

See Also
Objects
RequirementsTable

Functions
showAssumptionColumn | showRequirementColumn | hideRequirementColumn

 hideAssumptionColumn

1-179

hideRequirementColumn
Package: slreq.modeling

Hide columns in Requirements tab

Syntax
hideRequirementColumn(reqTable,column)

Description
hideRequirementColumn(reqTable,column) hides the column type specified by column in the
Requirements tab of the Requirements Table block, reqTable. The column type must be empty.

Examples

Hide the Postcondition Columns in a Requirements Table Block

Find the Requirements Table block in a model by using slreq.modeling.find.

reqTable = slreq.modeling.find("myModel");

Hide the Postcondition columns in the Requirements tab.

hideRequirementColumn(reqTable,"Postconditions");

Input Arguments
reqTable — Requirements Table block
RequirementsTable object

Requirements Table block, specified as a RequirementsTable object.

column — Column type
"Duration" | "Actions" | "Postconditions"

Column type to be shown, specified as "Duration", "Actions", or "Postconditions". Use this
argument to show the Duration, Action, or Postcondition columns, respectively.
Data Types: enumerated

Version History
Introduced in R2022a

See Also
Objects
RequirementsTable

1 Functions

1-180

Functions
showRequirementColumn | showAssumptionColumn | hideAssumptionColumn

 hideRequirementColumn

1-181

slreq.import
Import requirements from external documents

Syntax
slreq.import(docPath)
[refCount, reqSetFilePath, reqSetObj] = slreq.import(docPath)
slreq.import(docType)
slreq.import(docPath,Name,Value)
slreq.import(reqifFile)
slreq.import(reqifFile, 'mappingFile', mapFilePath)
slreq.import('clearcache')

Description
slreq.import(docPath) imports requirements content as referenced requirements from an
external document located at docPath. The imported requirements are saved in a new requirement
set with the same name as the external document. Use this import method to import requirements
content from Microsoft® Office documents and from files in the Requirements Interchange Format
(.reqif and .reqifz).

[refCount, reqSetFilePath, reqSetObj] = slreq.import(docPath) imports
requirements content as referenced requirements from an external document located at docPath
and returns the number of references imported refCount. The imported requirements are saved in
the requirement set reqSetObj located at reqSetFilePath with the same name as the external
document.

slreq.import(docType) imports requirements content as referenced requirements from an
external document that is of a registered document type docType. The imported requirements are
saved in a new requirement set with the same name as the external document.

slreq.import(docPath,Name,Value) imports requirements content as referenced requirements
from an external document located at docPath with options specified by one or more Name, Value
pair arguments.

slreq.import(reqifFile) imports requirement content from the ReqIF file reqifFile using a
pre-configured attribute mapping.

slreq.import(reqifFile, 'mappingFile', mapFilePath) imports requirement content from
the ReqIF file reqifFile using the attribute mapping specified by mapFilePath.

slreq.import('clearcache') cleans up temporary HTML files that are created when importing
rich text requirements.

Examples
Import Referenced Requirements

% Import referenced requirements from Microsoft Office documents
slreq.import('Specification002.docx');

1 Functions

1-182

slreq.import('D:/Projects/Requirements/Safety321.xlsx');

% Import referenced requirements from an IBM Rational DOORS Module
slreq.import('linktype_rmi_doors');

For more information on importing referenced requirements from third-party applications, see
“Import Requirements from Third-Party Applications”.

Input Arguments
docPath — Document location
character vector

The file path of the external requirements document, specified as a character vector.

docType — Document type
character vector

The document type of the external requirements document, specified as a character vector.
Example: 'linktype_rmi_doors'

reqifFile — ReqIF file location
character vector

The file path of the ReqIF file, specified as a character vector.

mapFilePath — Attribute mapping file location
character vector

The file path of the attribute mapping file, specified as a character vector.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ReqSet','design_specs.slreqx'

AsReference — Option to import as references
true (default) | false

Option to import requirements as references, specified as a Boolean value. The value false is
supported only for import from Microsoft Office documents.

attr2reqprop — ReqIF attribute mapping
containers.Map object

Import from ReqIF format, specifying the attribute mapping as a comma-separated pair consisting of
'attr2reqprop' and a containers.Map object. For example:

attrMap = containers.Map('KeyType','char','ValueType','char')
attrMap('SourceID') = 'Custom ID'; % Built-in attribute

 slreq.import

1-183

attrMap('ReqIF.ChapterName') = 'Summary'; % Built-in attribute
attrMap('Data Class') = 'MyDataClass'; % Custom attribute

slreq.import('myfile.reqif','attr2reqprop',attrMap);

Example: slreq.import('myfile.reqif','attr2reqprop',attrMap);

attributeColumn — Custom Attributes Column
double array

Column in the Microsoft Excel® spreadsheet that you want to map as custom attributes of the
requirements in your requirement set, specified as a double array.
Example: 'attributeColumn',[4 6]

attributes — Attribute names
cell array

Attribute names for custom attribute columns, specified as a cell array of character vectors.

Note When importing requirements from a Microsoft Excel spreadsheet, the length of this cell array
must match the number of columns specified for import using the attributeColumn argument.

Example: 'attributes',{'Test Status','Test Procedure'}

bookmarks — Option to import requirements using bookmarks
0 (default) | 1

Option to import requirements content using user-defined bookmarks, specified as a 1 or 0 of data
type logical.

By default, Requirements Toolbox sets the value to 1 for Microsoft Word documents and 0 for
Microsoft Excel spreadsheets.
Example: 'bookmarks',false

columns — Range of columns
double array

Range of columns to import from Microsoft Excel spreadsheet, specified as a double array.
Example: 'columns',[1 6]

createdByColumn — Created By Column
double

Column in the Microsoft Excel spreadsheet that you want to map to the CreatedBy property of the
requirements in your requirement set, specified as a double.
Example: 'createdByColumn',5

descriptionColumn — Description Column
double

Column in the Microsoft Excel spreadsheet that you want to map to the Description property of the
requirements in your requirement set, specified as a double.

1 Functions

1-184

Example: 'descriptionColumn',2

idColumn — ID Column
double

Column in the Microsoft Excel spreadsheet that you want to map to the ID property of the
requirements in your requirement set, specified as a double.
Example: 'idColumn',1

keywords — Attribute to map to Keywords
string scalar | character vector

Name of the attribute from the external document that you want to map to the Keywords property
for the imported requirements.

Use this argument when you import from IBM Rational DOORS or custom document types.
Example: "keywords","Requirement Keywords"

keywordsColumn — Keywords Column
double

Column in the Microsoft Excel spreadsheet that you want to map to the Keywords property of the
requirements in your requirement set, specified as a double.
Example: 'keywordsColumn',3

match — Regular expression pattern
character vector

Regular expression pattern for ID search in Microsoft Office documents.
Example: 'match','^REQ\d+'

modifiedByColumn — Modified By Column
double

Column in the Microsoft Excel spreadsheet that you want to map to the ModifiedBy property of the
requirements in your requirement set, specified as a double.
Example: 'modifiedByColumn',6

postImportFcn — Custom post-import callback
string scalar | character vector

Custom post-import callback script name to use during import, specified as a string scalar or
character vector.

The script that you assign to this callback executes after you import or update requirements.
Example: "postImportFcn","myPostImportScript"

preImportFcn — Custom pre-import callback
string scalar | character vector

Custom pre-import callback script name to use during import, specified as a string scalar or
character vector.

 slreq.import

1-185

The script that you assign to this callback executes before you import or update requirements.
Example: "preImportFcn","myPreImportScript"

rationale — Attribute to map to Rationale
string scalar | character vector

Name of the attribute from the external document that you want to map to the Rationale property
for the imported requirements.

Use this argument when you import from IBM Rational DOORS or custom document types.
Example: "rationale","Requirement Rationale"

rationaleColumn — Rationale Column
double

Column in the Microsoft Excel spreadsheet that you want to map to the Rationale property of the
requirements in your requirement set, specified as a double.
Example: 'rationaleColumn',5

ReqSet — Requirement Set
character vector

The name for the requirement set that you import requirements into, specified as a character vector.

If the requirement set exists, the requirements import under a new Import node. If the requirement
set does not exist, Requirements Toolbox creates it.
Example: 'ReqSet','My_Requirements_Set'

RichText — Option to import rich text requirements
false (default) | true

Option to import requirements as rich text, specified as a Boolean value.
Example: 'RichText',true

rows — Range of rows
double array

Range of rows to import from Microsoft Excel spreadsheet, specified as a double array.
Example: 'rows',[3 35]

sheet — Worksheet name
character vector

Worksheet name from Microsoft Excel workbook, specified as a character vector.
Example: 'sheet','Sheet1'

summaryColumn — Summary Column
double

Column in the Microsoft Excel spreadsheet that you want to map to the Summary property of the
requirements in your requirement set, specified as a double.

1 Functions

1-186

Example: 'summaryColumn',4

USDM — USDM Format Import Option
character vector

Import from Microsoft Excel spreadsheets specified in the USDM (Universal Specification Describing
Manner) standard format. Specify values as a character vector with the ID prefix optionally followed
by a separator character.
Example: 'RQ -' will match entries with IDs similar to RQ01, RQ01-2, RQ01-2-1 etc.

Output Arguments
refCount — Imported referenced requirements count
double

Number of referenced requirements imported, returned as a double.

reqSetFilePath — Requirement set file path
character vector

The file path of the requirement set to which you import requirements to, returned as a character
vector.

reqSetObj — Requirement set object
slreq.ReqSet object

Handle to the requirement set to which you import requirements to, returned as an slreq.ReqSet
object.

Version History
Introduced in R2018a

See Also
slreq.Reference | createReferences

 slreq.import

1-187

slreq.importViewSettings
Import view settings

Syntax
slreq.importViewSettings(viewSettingsFile)
slreq.importViewSettings(viewSettingsFile, overwriteFlag)

Description
slreq.importViewSettings(viewSettingsFile) imports Requirements Toolbox view settings
from a MAT-file, viewSettingsFile.

slreq.importViewSettings(viewSettingsFile, overwriteFlag) imports Requirements
Toolbox view settings from a MAT-file, viewSettingsFile, with an optional argument to overwrite
existing view settings, specified by overwriteFlag.

Input Arguments
viewSettingsFile — View settings file
character vector

Requirements Toolbox view settings file name, specified as a character vector.

overwriteFlag — Overwrite flag
false (default) | true

Optional flag to specify whether the existing view settings are to be overwritten, specified as a
Boolean.

Version History
Introduced in R2018b

See Also
slreq.exportViewSettings | slreq.resetViewSettings

1 Functions

1-188

slreq.load
Load requirement set or link set

Syntax
myReqSet = slreq.load(reqSetFile)

myReqSet = slreq.load(reqSetFile,forceResolve)

myLinkSet = slreq.load(linkSetFile)

myLinkSet = slreq.load(model)
[myLinkSet,myReqSet] = slreq.load(model)

Description
myReqSet = slreq.load(reqSetFile) loads a requirement set myReqSet into memory.

myReqSet = slreq.load(reqSetFile,forceResolve) loads a requirement set and fixes the
outdated profile when forceResolve is true. For more information, see “Customize Requirements
and Links by Using Stereotypes”.

myLinkSet = slreq.load(linkSetFile) loads a link set myLinkSet into memory.

myLinkSet = slreq.load(model) loads a Simulink model that contains at least one
Requirements Table block, specified by model, and loads the associated link set into memory.

[myLinkSet,myReqSet] = slreq.load(model) loads a Simulink model that contains at least
one Requirements Table block and loads the associated requirement set and link set into memory.

Examples

Load Requirement Set

Load a requirement set and return the associated slreq.ReqSet object.

rs = slreq.load("basicReqSet");

Load Requirement Set with Outdated Profile

Load a requirement set that has an outdated profile.

rs = slreq.load("myAddRequirementsOutdated",true);

 slreq.load

1-189

Load Link Set

Load a link set that contains direct links between requirements in Microsoft® Word and model
elements in Simulink®.

myLinkSet = slreq.load("slvnvdemo_fuelsys_officereq.slmx");

Load Requirement Set and Link Set for Requirements Table Block

Load the Simulink model®, requirement set, and link set associated with a Requirements Table block
in a Simulink® model.

[myLinkSet,myReqSet] = slreq.load("reqTableDurationModel1.slx");

Input Arguments
reqSetFile — Requirement set file
string scalar | character vector

requirement set file to load, specified as a string scalar or character vector.
Example: "myReqSet.slreqx"

linkSetFile — Link set file
string scalar | character vector

Link set file to load, specified as a string scalar or character vector.
Example: "myLinkSet.slmx"

forceResolve — Option to fix outdated profile
0 (default) | 1

Option to fix outdated profile when loading requirement set, specified as 1 (true) or 0 (false) of
data type logical.
Example: "myLinkSet.slmx"

model — Simulink model
string scalar | character vector

Simulink model to load, specified as a string scalar or character vector. The model must contain at
least one Requirements Table block. Each block is associated with a requirement set. See “Configure
Properties of Formal Requirements”. You must include the .slx extension.

Output Arguments
myReqSet — Loaded requirement set
slreq.ReqSet object

Loaded requirement set, returned as an slreq.ReqSet object.

1 Functions

1-190

myLinkSet — Loaded link set
slreq.LinkSet object

Loaded link set, returned as an slreq.LinkSet object.

Version History
Introduced in R2018a

See Also
slreq.ReqSet | slreq.LinkSet | slreq.open | Requirements Table

 slreq.load

1-191

login
Package: oslc

Log in to OSLC client

Syntax
login(myClient)

Description
login(myClient) prompts for login credentials and authenticates myClient with the Open
Services for Lifecycle Collaboration (OSLC) server.

Note If the login function does not work for your service provider, try using setHttpOptions and
setHttpHeader to authenticate an instance of oslc.Client with your OSLC service provider. The
login function might not work with some OSLC service providers.

Examples

Create and Configure an OSLC Client for the Requirements Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the requirements management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Then set the service root and catalog path for
the requirements management domain and the configuration query path.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'/oslc_rm/catalog');
setConfigurationQueryPath(myClient,'gc/oslc-query/configurations');
myClient

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

providers =

1 Functions

1-192

 4×1 cell array

 {'OSLC Plugin' }
 {'Model Based Design with OSLC' }
 {'OSLC4RM' }
 {'Interactive Testing (Requirements Management)'}

setServiceProvider(myClient,'OSLC Plugin');

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/rm/oslc_rm/catalog'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

Version History
Introduced in R2021a

See Also
oslc.Client | setCatalogPath | setServer | setServiceRoot | setUser |
setConfigurationQueryPath

 login

1-193

slreq.inLinks
Get incoming links for requirement or other linkable item

Syntax
ks = slreq.inLinks(node)

Description
ks = slreq.inLinks(node) returns incoming links ks, a Link or Link array, to nodes, a
Requirement, Reference, or other linkable item.

Examples

Determine Incoming and Outgoing Links

This example shows how to determine the incoming link for a requirement and outgoing link for a
model object. Click the Open Live Script button to get copies of the example files.

Load Model and Requirement Set

load_system('reqs_validation_property_proving_original_model');
rqset = slreq.load('original_thrust_reverser_requirements.slreqx');

Get a Requirement from the Set

req = slreq.find('Type','Requirement','Summary','Maximum Throttle Threshold');

Determine Incoming Links for the Requirement

lkIn = slreq.inLinks(req)

lkIn =
 Link with properties:

 Type: 'Implement'
 Description: 'R11: Maximum Throttle Threshold (original_thrust_reverser_requirements#11)'
 Keywords: {}
 Rationale: ''
 CreatedOn: 25-Mar-2019 16:10:06
 CreatedBy: 'asriram'
 ModifiedOn: 25-Mar-2019 16:10:06
 ModifiedBy: 'asriram'
 Revision: 14
 SID: 52
 Comments: [0x0 struct]

Determine the Incoming Link Source

lkSrc = source(lkIn);

1 Functions

1-194

Convert Link Source to Model Object

mo = slreq.structToObj(lkSrc);

Determine Outgoing Link from the Model Object

lkOut = slreq.outLinks(mo)

lkOut =
 Link with properties:

 Type: 'Implement'
 Description: 'R11: Maximum Throttle Threshold (original_thrust_reverser_requirements#11)'
 Keywords: {}
 Rationale: ''
 CreatedOn: 25-Mar-2019 16:10:06
 CreatedBy: 'asriram'
 ModifiedOn: 25-Mar-2019 16:10:06
 ModifiedBy: 'asriram'
 Revision: 14
 SID: 52
 Comments: [0x0 struct]

Close Files

slreq.clear;
bdclose all;

Input Arguments
node — Linkable item to get incoming links for
struct

A linkable item that may have incoming requirements links. Common examples include a
Requirement or Reference. Can be the output of find.
Example: Requirement with properties
Data Types: struct

Output Arguments
ks — Link(s) incoming to node
Link or Link array

A Link or Link array incoming to the linkable item.

Version History
Introduced in R2017b

See Also
slreq.outLinks | slreq.structToObj

 slreq.inLinks

1-195

slreq.new
Create requirement set

Syntax
newReqSet = slreq.new(reqSetName)
newReqSet = slreq.new(reqSetPath)

Description
newReqSet = slreq.new(reqSetName) creates a requirement set newReqSet with the name
specified by reqSetName in the current working folder.

newReqSet = slreq.new(reqSetPath) creates a requirement set newReqSet in the folder
specified by reqSetPath.

Note The folder specified by reqSetPath must exist on disk.

Examples
Create Requirement Set

% Create requirement set in current working folder
myReqSet1 = slreq.new('New_Req_Set_1')

myReqSet1 =

 ReqSet with properties:

 Description: ''
 Name: 'New_Req_Set_1'
 Filename: 'L:\New_Req_Set_1.slreqx'
 Revision: 1
 Dirty: 1
 CustomAttributeNames: {}
 CreatedBy: 'John Doe'
 CreatedOn: 18-Feb-2008 20:54:52
 ModifiedBy: 'Jane Doe'
 ModifiedOn: 20-Jan-2016 12:44:12

% Create requirement set in a different directory
myReqSet2 = slreq.new('L:\Reqs_Work\New_Req_Set_2')

myReqSet2 =

 ReqSet with properties:

 Description: ''
 Name: 'New_Req_Set_2'
 Filename: 'L:\Reqs_Work\New_Req_Set_2.slreqx'

1 Functions

1-196

 Revision: 1
 Dirty: 1
 CustomAttributeNames: {}
 CreatedBy: 'Jane Doe'
 CreatedOn: 11-Jan-2009 11:33:01
 ModifiedBy: 'John Doe'
 ModifiedOn: 18-Jan-2018 09:07:32

Input Arguments
reqSetName — Requirement set name
character vector

Name of the requirement set to create, specified as a character vector.

reqSetPath — Requirement set path
character vector

Folder to create requirement set in, specified as a character vector.

Output Arguments
newReqSet — Created requirement set
slreq.ReqSet object

The created requirement set, specified as an slreq.ReqSet object.

Version History
Introduced in R2018a

See Also
slreq.ReqSet

 slreq.new

1-197

slreq.open
Open requirement set

Syntax
myReqSet = slreq.open(ReqSetFilePath)
myReqSet = slreq.open(ReqSetName)

myReqSet = slreq.open(model)

Description
myReqSet = slreq.open(ReqSetFilePath) loads the requirement set at ReqSetFilePath into
memory. If the requirement set is already loaded into memory, the Requirements Editor opens. If
the requirement set is already loaded and the Requirements Editor is open, the specified
requirement set is selected in the Requirements Editor.

myReqSet = slreq.open(ReqSetName) loads the requirement set named ReqSetName.

myReqSet = slreq.open(model) loads the specified Simulink model specified by model and loads
the requirement sets in the Requirements Editor. The model must contain at least one
Requirements Table block.

Examples

Open a Requirement Set

This example shows how to load and open a requirement set in the Requirements Editor and return
the associated slreq.ReqSet object.

rs = slreq.open("basicReqSet");

Input Arguments
ReqSetFilePath — Requirement set file path
string scalar | character vector

The full file path of the requirement set to be loaded, specified as a string scalar or character vector.

ReqSetName — Requirement set name
string scalar | character vector

The name of the requirement set to be loaded, specified as a string scalar or character vector.

model — Simulink model
string scalar | character vector

1 Functions

1-198

The Simulink model to load, specified as a string scalar or character vector. The model must contain
at least one Requirements Table block. Each block is associated with a requirement set. See
“Configure Properties of Formal Requirements”. You must include the .slx extension.

Output Arguments
myReqSet — Requirement set object
slreq.ReqSet object

Handle to the requirement set you open, returned as an slreq.ReqSet object.

Version History
Introduced in R2018a

See Also
slreq.ReqSet | Requirements Editor | Requirements Table

 slreq.open

1-199

slreq.openRequirementsManager
Open Requirements Manager app in model

Syntax
slreq.openRequirementsManager(model)

Description
slreq.openRequirementsManager(model) opens the Requirements Manager app in the
Simulink model model and brings the model to the front. The model must be open.

Examples

Open and Close the Requirements Manager App Programmatically

This example shows how to open and close the Requirements Manager app programmatically.

Open the CruiseRequirementsExample project and open the crs_plant model.

slreqCCProjectStart;
open_system("crs_plant");

Open the Requirements Manager app in the crs_plant model.

slreq.openRequirementsManager("crs_plant");

Close the Requirements Manager app in the crs_plant model.

slreq.closeRequirementsManager("crs_plant");

Input Arguments
model — Simulink model
string scalar | character vector | model handle

Simulink model to open the Requirements Manager app in, specified as a string scalar or character
vector that contains the name of the model, or a model handle.

Tips
• Use bdroot to get the top-level model of the current system.
• Use get_param and bdroot to get the handle for the top-level model of the current system:

model = get_param(bdroot,"Handle");

• Open the Requirements Editor with slreq.editor.

1 Functions

1-200

Version History
Introduced in R2021a

See Also
slreq.closeRequirementsManager | bdroot | slreq.editor | Requirements Editor

 slreq.openRequirementsManager

1-201

slreq.outLinks
Get outgoing links for a block or other linkable item

Syntax
ks = slreq.outLinks(node)

Description
ks = slreq.outLinks(node), returns outgoing links ks, a Link or Link array, from node, a
block or other linkable item.

Examples

Determine Incoming and Outgoing Links

This example shows how to determine the incoming link for a requirement and outgoing link for a
model object. Click the Open Live Script button to get copies of the example files.

Load Model and Requirement Set

load_system('reqs_validation_property_proving_original_model');
rqset = slreq.load('original_thrust_reverser_requirements.slreqx');

Get a Requirement from the Set

req = slreq.find('Type','Requirement','Summary','Maximum Throttle Threshold');

Determine Incoming Links for the Requirement

lkIn = slreq.inLinks(req)

lkIn =
 Link with properties:

 Type: 'Implement'
 Description: 'R11: Maximum Throttle Threshold (original_thrust_reverser_requirements#11)'
 Keywords: {}
 Rationale: ''
 CreatedOn: 25-Mar-2019 16:10:06
 CreatedBy: 'asriram'
 ModifiedOn: 25-Mar-2019 16:10:06
 ModifiedBy: 'asriram'
 Revision: 14
 SID: 52
 Comments: [0x0 struct]

Determine the Incoming Link Source

lkSrc = source(lkIn);

1 Functions

1-202

Convert Link Source to Model Object

mo = slreq.structToObj(lkSrc);

Determine Outgoing Link from the Model Object

lkOut = slreq.outLinks(mo)

lkOut =
 Link with properties:

 Type: 'Implement'
 Description: 'R11: Maximum Throttle Threshold (original_thrust_reverser_requirements#11)'
 Keywords: {}
 Rationale: ''
 CreatedOn: 25-Mar-2019 16:10:06
 CreatedBy: 'asriram'
 ModifiedOn: 25-Mar-2019 16:10:06
 ModifiedBy: 'asriram'
 Revision: 14
 SID: 52
 Comments: [0x0 struct]

Close Files

slreq.clear;
bdclose all;

Input Arguments
node — Linkable item to get outgoing links for
struct

A linkable item that may have outgoing requirements links. Common examples include a block,
function, or TestCase.
Example: Simulink.Gain
Example: TestCase with properties
Data Types: struct

Output Arguments
ks — Link(s) incoming to node
Link or Link array

A Link or Link array incoming to the linkable item.

Version History
Introduced in R2017b

 slreq.outLinks

1-203

See Also
slreq.inLinks | slreq.structToObj

1 Functions

1-204

queryChangeRequests
Package: oslc.core

Query OSLC service provider for change requests

Syntax
changeRequests = queryChangeRequests(myQueryCapability)

Description
changeRequests = queryChangeRequests(myQueryCapability) returns the available change
request resources in the Open Services for Lifecycle Collaboration (OSLC) service provider that is
associated with the query capability myQueryCapability.

Examples

Query Service Provider for Change Requests

This example shows how to submit a query for change request resources with a configured OSLC
client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Change Management Domain” on page 2-5, create a query
capability for the change request resource type.

myQueryCapability = getQueryService(myClient,'ChangeRequest')

myQueryCapability =

 QueryCapability with properties:

 queryParameter: ''
 client: [1×1 oslc.Client]
 queryBase: 'https://localhost:9443/rm/views?oslc.query=true&projectURL=http...'
 resourceShape: {0×1 cell}
 dom: [1×1 matlab.io.xml.dom.Element]
 title: 'Query Capability'
 resourceType: {1×2 cell}

Submit a query request to the service provider for the available change request resources.

changeRequests = queryChangeRequests(myQueryCapability)

changeRequests =

 1×7 ChangeRequest array with properties:

 ResourceUrl
 Dirty
 IsFetched

 queryChangeRequests

1-205

 Title
 Identifier

Input Arguments
myQueryCapability — Resource query capability
oslc.core.QueryCapability object

OSLC resource query capability, specified as an oslc.core.QueryCapability object.

Output Arguments
changeRequests — Change request resource
oslc.cm.ChangeRequest object

OSLC change request resource, returned as an oslc.cm.ChangeRequest object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.cm.ChangeRequest | oslc.core.QueryCapability

1 Functions

1-206

queryRequirementCollections
Package: oslc.core

Query OSLC service provider for requirement collections

Syntax
reqCollections = queryRequirementCollections(myQueryCapability)

Description
reqCollections = queryRequirementCollections(myQueryCapability) returns the
available requirement collection resources in the Open Services for Lifecycle Collaboration (OSLC)
service provider that is associated with the query capability myQueryCapability.

Examples

Query Service Provider for Requirement Collections

This example shows how to submit a query request for requirement collection resources with a
configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement collection resource type.

myQueryCapability = getQueryService(myClient,'RequirementCollection')

myQueryCapability =

 QueryCapability with properties:

 queryParameter: ''
 client: [1×1 oslc.Client]
 queryBase: 'https://localhost:9443/rm/views?oslc.query=true&projectURL=http...'
 resourceShape: {0×1 cell}
 dom: [1×1 matlab.io.xml.dom.Element]
 title: 'Query Capability'
 resourceType: {1×2 cell}

Submit a query request to the service provider for the available requirement collection resources.

reqCollections = queryRequirementCollections(myQueryCapability)

reqCollections =

 1×5 RequirementCollection array with properties:

 ResourceUrl
 Dirty
 IsFetched

 queryRequirementCollections

1-207

 Title
 Identifier

Input Arguments
myQueryCapability — Resource query capability
oslc.core.QueryCapability object

OSLC resource query capability, specified as an oslc.core.QueryCapability object.

Output Arguments
reqCollections — Requirement collection resource
oslc.rm.RequirementCollection object

OSLC requirement collection resource, returned as an oslc.rm.RequirementCollection object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.cm.ChangeRequest | oslc.core.QueryCapability |
queryRequirements

1 Functions

1-208

queryRequirements
Package: oslc.core

Query OSLC service provider for requirements

Syntax
reqs = queryRequirements(myQueryCapability)

Description
reqs = queryRequirements(myQueryCapability) returns the available requirement resources
in the Open Services for Lifecycle Collaboration (OSLC) service provider that is associated with the
query capability myQueryCapability.

Examples

Submit a Query Request with Query Capability

This example shows how to submit a query request with a configured OSLC client.

After you have created and configured an OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type.

myQueryCapability = getQueryService(myClient,'Requirement')

myQueryCapability =

 QueryCapability with properties:

 queryParameter: ''
 client: [1×1 oslc.Client]
 queryBase: 'https://localhost:9443/rm/views?oslc.query=true&projectURL=http...'
 resourceShape: {0×1 cell}
 title: 'Query Capability'
 resourceType: {1×2 cell}

Submit a query request to the service provider for the available requirement resources.

reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign the first returned requirement resource to the variable myReq, then fetch the full resource
properties for myReq. Examine the Title property.

 queryRequirements

1-209

myReq = reqs(1);
status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

title = myReq.Title

title =

 'Requirement 1'

Input Arguments
myQueryCapability — Resource query capability
oslc.core.QueryCapability object

OSLC resource query capability, specified as an oslc.core.QueryCapability object.

Output Arguments
reqs — Requirement resource
oslc.rm.Requirement object

OSLC requirement resource, returned as an oslc.rm.Requirement object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.core.QueryCapability |
queryRequirementCollections

1 Functions

1-210

queryTestCases
Package: oslc.core

Query OSLC service provider for test cases

Syntax
testCases = queryTestCases(myQueryCapability)

Description
testCases = queryTestCases(myQueryCapability) returns the available test case resources
in the Open Services for Lifecycle Collaboration (OSLC) service provider that is associated with the
query capability myQueryCapability.

Examples

Query Service Provider for Test Cases

This example shows how to submit a query request for test case resources with a configured OSLC
client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test case resource type.

myQueryCapability = getQueryService(myClient,'TestCase')

myQueryCapability =

 QueryCapability with properties:

 queryParameter: ''
 client: [1×1 oslc.Client]
 queryBase: 'https://localhost:9443/qm/views?oslc.query=true&projectURL=http...'
 resourceShape: {0×1 cell}
 dom: [1×1 matlab.io.xml.dom.Element]
 title: 'Query Capability'
 resourceType: {1×2 cell}

Submit a query request to the service provider for the available test case resources.

testCases = queryTestCases(myQueryCapability)

testCases =

 1×5 TestCase array with properties:

 ResourceUrl
 Dirty
 IsFetched

 queryTestCases

1-211

 Title
 Identifier

Input Arguments
myQueryCapability — Resource query capability
oslc.core.QueryCapability object

OSLC resource query capability, specified as an oslc.core.QueryCapability object.

Output Arguments
testCases — Test case resource
oslc.qm.TestCase object

OSLC test case resource, returned as an oslc.qm.TestCase object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.cm.ChangeRequest | oslc.core.QueryCapability |
queryTestExecutionRecords | queryTestPlans | queryTestResults | queryTestScripts

1 Functions

1-212

queryTestExecutionRecords
Package: oslc.core

Query OSLC service provider for test execution records

Syntax
testExecutionRecords = queryTestExecutionRecords(myQueryCapability)

Description
testExecutionRecords = queryTestExecutionRecords(myQueryCapability) returns the
available test execution record resources in the Open Services for Lifecycle Collaboration (OSLC)
service provider that is associated with the query capability myQueryCapability.

Examples

Query Service Provider for Test Execution Records

This example shows how to submit a query request for test execution record resources with a
configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test execution record resource type.

myQueryCapability = getQueryService(myClient,'TestExecutionRecord')

myQueryCapability =

 QueryCapability with properties:

 queryParameter: ''
 client: [1×1 oslc.Client]
 queryBase: 'https://localhost:9443/rm/views?oslc.query=true&projectURL=http...'
 resourceShape: {0×1 cell}
 dom: [1×1 matlab.io.xml.dom.Element]
 title: 'Query Capability'
 resourceType: {1×2 cell}

Submit a query request to the service provider for the available test execution record resources.

testExecutionRecords = queryTestExecutionRecords(myQueryCapability)

testExecutionRecords =

 1×5 TestExecutionRecord array with properties:

 ResourceUrl
 Dirty
 IsFetched

 queryTestExecutionRecords

1-213

 Title
 Identifier

Input Arguments
myQueryCapability — Resource query capability
oslc.core.QueryCapability object

OSLC resource query capability, specified as an oslc.core.QueryCapability object.

Output Arguments
testExecutionRecords — Test execution record resource
oslc.qm.TestExecutionRecord object

OSLC test execution record resource, returned as an oslc.qm.TestExecutionRecord object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.cm.ChangeRequest | oslc.core.QueryCapability | queryTestPlans |
queryTestResults | queryTestCases | queryTestScripts

1 Functions

1-214

queryTestPlans
Package: oslc.core

Query OSLC service provider for test plans

Syntax
testPlans = queryTestPlans(myQueryCapability)

Description
testPlans = queryTestPlans(myQueryCapability) returns the available test plan resources
in the Open Services for Lifecycle Collaboration (OSLC) service provider that is associated with the
query capability myQueryCapability.

Examples

Query Service Provider for Test Plans

This example shows how to submit a query request for test plan resources with a configured OSLC
client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test plan resource type.

myQueryCapability = getQueryService(myClient,'TestPlan')

myQueryCapability =

 QueryCapability with properties:

 queryParameter: ''
 client: [1×1 oslc.Client]
 queryBase: 'https://localhost:9443/rm/views?oslc.query=true&projectURL=http...'
 resourceShape: {0×1 cell}
 dom: [1×1 matlab.io.xml.dom.Element]
 title: 'Query Capability'
 resourceType: {1×2 cell}

Submit a query request to the service provider for the available test plan resources.

testPlans = queryTestPlans(myQueryCapability)

testPlans =

 1×5 TestPlan array with properties:

 ResourceUrl
 Dirty
 IsFetched

 queryTestPlans

1-215

 Title
 Identifier

Input Arguments
myQueryCapability — Resource query capability
oslc.core.QueryCapability object

OSLC resource query capability, specified as an oslc.core.QueryCapability object.

Output Arguments
testPlans — Test plan resource
oslc.qm.TestPlan object

OSLC test plan resource, returned as an oslc.qm.TestPlan object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.cm.ChangeRequest | oslc.core.QueryCapability |
queryTestExecutionRecords | queryTestResults | queryTestCases | queryTestScripts

1 Functions

1-216

queryTestResults
Package: oslc.core

Query OSLC service provider for test results

Syntax
testResults = queryTestResults(myQueryCapability)

Description
testResults = queryTestResults(myQueryCapability) returns the available test result
resources in the Open Services for Lifecycle Collaboration (OSLC) service provider that is associated
with the query capability myQueryCapability.

Examples

Query Service Provider for Test Results

This example shows how to submit a query request for test result resources with a configured OSLC
client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test result resource type.

myQueryCapability = getQueryService(myClient,'TestResult')

myQueryCapability =

 QueryCapability with properties:

 queryParameter: ''
 client: [1×1 oslc.Client]
 queryBase: 'https://localhost:9443/rm/views?oslc.query=true&projectURL=http...'
 resourceShape: {0×1 cell}
 dom: [1×1 matlab.io.xml.dom.Element]
 title: 'Query Capability'
 resourceType: {1×2 cell}

Submit a query request to the service provider for the available test result resources.

testResults = queryTestResults(myQueryCapability)

testResults =

 1×5 TestResult array with properties:

 ResourceUrl
 Dirty
 IsFetched

 queryTestResults

1-217

 Title
 Identifier

Input Arguments
myQueryCapability — Resource query capability
oslc.core.QueryCapability object

OSLC resource query capability, specified as an oslc.core.QueryCapability object.

Output Arguments
testResults — Test result resource
oslc.qm.TestResult object

OSLC test result resource, returned as an oslc.qm.TestResult object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.cm.ChangeRequest | oslc.core.QueryCapability |
queryTestExecutionRecords | queryTestPlans | queryTestCases | queryTestScripts

1 Functions

1-218

queryTestScripts
Package: oslc.core

Query OSLC service provider for test scripts

Syntax
testScripts = queryTestScripts(myQueryCapability)

Description
testScripts = queryTestScripts(myQueryCapability) returns the available test script
resources in the Open Services for Lifecycle Collaboration (OSLC) service provider that is associated
with the query capability myQueryCapability.

Examples

Query Service Provider for Test Scripts

This example shows how to submit a query request for test script resources with a configured OSLC
client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test script resource type.

myQueryCapability = getQueryService(myClient,'TestScript')

myQueryCapability =

 QueryCapability with properties:

 queryParameter: ''
 client: [1×1 oslc.Client]
 queryBase: 'https://localhost:9443/rm/views?oslc.query=true&projectURL=http...'
 resourceShape: {0×1 cell}
 dom: [1×1 matlab.io.xml.dom.Element]
 title: 'Query Capability'
 resourceType: {1×2 cell}

Submit a query request to the service provider for the available test script resources.

testScripts = queryTestScripts(myQueryCapability)

testScripts =

 1×5 TestScript array with properties:

 ResourceUrl
 Dirty
 IsFetched

 queryTestScripts

1-219

 Title
 Identifier

Input Arguments
myQueryCapability — Resource query capability
oslc.core.QueryCapability object

OSLC resource query capability, specified as an oslc.core.QueryCapability object.

Output Arguments
testScripts — Test script resource
oslc.qm.TestScript object

OSLC test script resource, returned as an oslc.qm.TestScript object.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.cm.ChangeRequest | oslc.core.QueryCapability |
queryTestExecutionRecords | queryTestPlans | queryTestResults | queryTestCases

1 Functions

1-220

slreq.refreshCustomizations
Register Requirements Toolbox customizations

Syntax
slreq.refreshCustomizations

Description
slreq.refreshCustomizations searches the MATLAB path for sl_customization.m files and
registers the requirement type and link type customizations defined in the files.

Note If Simulink is installed, this function behaves the same as sl_refresh_customizations. If
Simulink is not installed, this function only registers Requirements Toolbox customizations and
silently ignores other customizations.

Examples

Define and Register Custom Requirement and Link Types by Using an sl_customization
File

This example shows how to define and register custom requirement types and custom link types by
using an sl_customization file.

Create an sl_customization File

In MATLAB®, select the Home tab and click New Script. Copy and paste this code in the script.

function sl_customization(cm)
 cObj = cm.SimulinkRequirementsCustomizer;
end

Select the Editor tab and click Save. Save the file as sl_customization.m.

Define Requirements Toolbox Customizations

Define a custom requirement type called Stakeholder by using the addCustomRequirementType
function. Define the custom requirement type as a subtype of the built-in Functional type, then
provide a description for the custom requirement type. Copy and paste this code in the
sl_customization file.

addCustomRequirementType(cObj,"Stakeholder",slreq.custom.RequirementType.Functional,...
 "Stakeholder functional requirements");

Define a custom link type as a subtype of the built-in Relate type called Trace by using the
addCustomLinkType function. Define the forward and backward link direction as Traces and
Traced from, respectively, then provide a description for the custom link type. Copy and paste this
code in the sl_customization file and click Save.

 slreq.refreshCustomizations

1-221

addCustomLinkType(cObj,"Trace",slreq.custom.LinkType.Relate,"Traces",...
 "Traced from","General purpose link type from requirement to other item.");

Register the Requirements Toolbox Customizations

The updated sl_customization file defines the requirement type and link type customizations.

type sl_customization

function sl_customization(cm)
 cObj = cm.SimulinkRequirementsCustomizer;
 addCustomRequirementType(cObj,"Stakeholder",slreq.custom.RequirementType.Functional,...
 "Stakeholder functional requirements");
 addCustomLinkType(cObj,"Trace",slreq.custom.LinkType.Relate,"Traces",...
 "Traced from","General purpose link type from requirement to other item.");
end

Register the Requirements Toolbox customizations.

slreq.refreshCustomizations

View Customizations in the Requirements Editor

Open the basicReqSet requirement set in the Requirements Editor.

slreq.open("basicReqSet");

In the Requirements Editor, click Show Requirements and then select the requirement with index
1. In the right pane, under Properties, in the Type menu, select Stakeholder from the list.

Click Show Links and select link #1. In the right pane, under Properties, in the Type menu, select
Traces from the list.

1 Functions

1-222

Version History
Introduced in R2022a

See Also
Topics
sl_refresh_customizations
“Define Custom Requirement and Link Types by Using sl_customization Files”
“Register Customizations with Simulink” (Simulink)

 slreq.refreshCustomizations

1-223

slreq.refreshLinkDependencies
Refresh requirement link dependencies

Syntax
slreq.refreshLinkDependencies()

Description
slreq.refreshLinkDependencies() recreates all requirement link dependencies. Use this
command to:

• Refresh corrupted, missing, or incorrect requirement link dependencies if a project is open.
• Create dependency information when working with older projects and model files with embedded

link sets.

Version History
Introduced in R2018b

See Also
Topics
“View and Edit Links”

1 Functions

1-224

slreq.registerNavigationFcn
Register navigation function for referenced requirements

Syntax
slreq.registerNavigationFcn(domain,callbackFunction)

Description
slreq.registerNavigationFcn(domain,callbackFunction) registers a navigation callback
function, callbackFunction, for referenced requirements imported from ReqIF files that have the
Domain property value equal to domain. Use this function to enable navigation from the
Requirements Editor to the original requirement in a third-party requirements management tool.

Note The navigation callback function should take this form:

function myCustomNavigationFunction(ref)
% Enter your implementation here
end

The function should take the slreq.Reference object as an input.

Examples

Register and Get a Navigation Callback Function for Referenced Requirements Imported
from ReqIF Files

This example shows how to register and get the registered navigation callback function for
referenced requirements imported from ReqIF™ files.

Import the ReqIF file mySpec.reqif into Requirements Toolbox™.

count = slreq.import("mySpec.reqif");

Get the handle for the imported requirement set. Check the domain for the imported referenced
requirements.

rs = slreq.find("Type","ReqSet","Name","mySpec");
topRef = children(rs);
domain = topRef.Domain

domain =
'Third-Party Tool'

Check if there are any currently registered navigation callback functions for the domain.

callback = slreq.getNavigationFcn(domain)

 slreq.registerNavigationFcn

1-225

callback =

 0x0 empty char array

Register the custom navigation callback function myNavigationFcn for the domain. Confirm that
the navigation callback function was registered.

slreq.registerNavigationFcn(domain,"myNavigationFunction")
callback = slreq.getNavigationFcn(domain)

callback =
'myNavigationFunction'

Cleanup

Clear the open requirement sets without saving. Unregister the custom navigation callback function.

slreq.clear;
slreq.registerNavigationFcn(domain,'');

Input Arguments
domain — Third-party requirements tool domain
string scalar | character vector

Third-party requirements tool domain for which to register the navigation callback function, specified
as a string scalar or character vector.

This argument should match the Domain property value of the referenced requirement.

callbackFunction — Navigation callback function name
string scalar | character vector

Navigation callback function name to register, specified as a string scalar or a character vector.

Tips
• You can clear the registered navigation callback function for a domain by entering:

slreq.registerNavigationFcn(domain,"")
• You can get the value of the Domain property for a referenced requirement at the MATLAB

command prompt by entering:

domain = myReferencedRequirement.Domain

domain =

 'Third-Party Tool'
• You can use the template generated by Requirements Toolbox to create your navigation callback

function. For more information, see “Navigate from Referenced Requirements to Requirements in
Third-Party Applications”.

Version History
Introduced in R2019a

1 Functions

1-226

See Also
slreq.getNavigationFcn | slreq.Reference | slreq.import | Requirements Editor

Topics
“Navigate from Referenced Requirements to Requirements in Third-Party Applications”

 slreq.registerNavigationFcn

1-227

remove
Package: oslc

Remove resource from OSLC service provider

Syntax
status = remove(resource,myClient)

Description
status = remove(resource,myClient) removes the resource resource from the Open
Services for Lifecycle Collaboration (OSLC) service provider associated with myClient and returns
the remove success status.

Examples

Remove an Existing Requirement

This example shows how to submit a query request for requirement resources with a configured
OSLC client and remove a requirement resource.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type.

myQueryCapability = getQueryService(myClient,'Requirement');

Submit a query request to the service provider for the available requirement resources.

reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Retrieve the full resource data from the service provider for a requirement resource. Inspect the
requirement resource.

myReq = reqs(1);
status = fetch(myReq,myClient)

status =

 StatusCode enumeration

1 Functions

1-228

 OK

myReq

myReq =

 Requirement with properties:

 ResourceUrl: 'https://localhost:9443/rm/resources/_72lxMWJREeup0...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Requirement'
 Identifier: '1806'

Remove the requirement from the service provider.

status = remove(myReq,myClient)

status =

 StatusCode enumeration

 OK

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

Output Arguments
status — Removal success status
matlab.net.http.StatusCode object

Removal success status, returned as a matlab.net.http.StatusCode object.

 remove

1-229

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | commit | show | fetch

1 Functions

1-230

removeLink
Package: oslc.rm

Remove link from local OSLC requirement resource object

Syntax
removeLink(reqResource,resourceURL)

Description
removeLink(reqResource,resourceURL) removes the RDF/XML element j.0:Link that has the
rdf:resource attribute set to resourceURL from the requirement or requirement collection
resource specified by reqResource. Use the commit function to apply the change to the service
provider. For more information about RDF/XML elements, see An XML Syntax for RDF on the World
Wide Web Consortium website and QM Resource Definitions on the Open Services for Lifecycle
Collaboration (OSLC) website.

Examples

Add and Remove Links from OSLC Resources to Requirement

This example shows how to add and remove links from OSLC resources to an OSLC requirement.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type. Submit a query request to the service provider for the
available requirement resources.

myQueryCapability = getQueryService(myClient,'Requirement');
reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign one of the requirements to a variable called myReq and one to linkReq. Fetch the full
resource properties for the requirements.

myReq = reqs(1);
linkReq = reqs(5);
fetch(myReq,myClient);
fetch(linkReq,myClient);

Add a link from linkReq to myReq. Confirm the link creation by getting the links for myReq.

 removeLink

1-231

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions

addLink(myReq,linkReq)
links = getLinks(myReq)

links =

 1×1 cell array

 {'https://localhost:9443/rm/CA_3d5ba3752e2c489b965a3ecceffb664a'}

In the service provider, identify a test case to link to the requirement. Identify the resource URL of
the test case and assign it to a variable called URL. Add a link from URL to myReq. Confirm the link
creation by getting the links for myReq.

URL = 'https://localhost:9443/qm/_ibz6tGWYEeuAF8ZpKyQQtg';
addLink(myReq,URL)
links = getLinks(myReq)

links =

 1×2 cell array

 {'https://localhost:9443/rm...'} {'https://localhost:9443/qm...'}

Commit the changes to the service provider.

status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

Fetch the full resource properties for the updated requirement myReq.

status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

Get the resource URLs linked to myReq.

links = getLinks(myReq)

links =

 1×2 cell array

 {'https://localhost:9443/rm...'} {'https://localhost:9443/qm...'}

Get the URL for the first linked resource and assign it to URL.

URL = links{1}

URL =

 'https://localhost:9443/rm/CA_3d5ba3752e2c489b965a3ecceffb664a'

1 Functions

1-232

Before removing the link from myReq, confirm that the resource URL points to the requirement that
you want to remove. Create a requirement resource object and set the resource URL. Fetch the full
resource properties for the requirement and inspect the requirement.

req = oslc.rm.Requirement;
setResourceUrl(req,URL);
status = fetch(req,myClient)

status =

 StatusCode enumeration

 OK

req

ans =

 Requirement with properties:

 ResourceUrl: 'https://localhost:9443/rm/CA_3d5ba3752e2c489b965a...'
 Dirty: 0
 IsFetched: 1
 Title: '[SAFe] Lifecycle Scenario Template'
 Identifier: '1165'

Remove the link from myReq and commit the changes to the service provider.

removeLink(myReq,URL)
status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

Fetch the full resource properties for the updated requirement myReq.

status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

Verify the link removal by getting the URLs for the resources linked to myReq.

links = getLinks(myReq)

links =

 1×1 cell array

 removeLink

1-233

 {'https://localhost:9443/qm/_ibz6tGWYEeuAF8ZpKyQQtg'}

Input Arguments
reqResource — OSLC requirement resource
oslc.rm.Requirement object | oslc.rm.RequirementCollection object

OSLC requirement or requirement collection resource object, specified as an
oslc.rm.Requirement or oslc.rm.RequirementCollection object.

resourceURL — OSLC resource URL
character vector

OSLC resource URL, specified as a character vector.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection | addLink |
removeRequirementLink | getLinks

1 Functions

1-234

removeRequirementLink
Package: oslc.qm

Remove requirement traceability link from local OSLC test resource object

Syntax
removeRequirementLink(testResource,requirementURL)

Description
removeRequirementLink(testResource,requirementURL) removes the RDF/XML element
oslc_qm:validatesRequirement that has the rdf:resource attribute set to requirementURL
from the test case or test script specified by testResource. Use the commit function to apply the
change to the service provider. For more information about RDF/XML elements, see An XML Syntax
for RDF on the World Wide Web Consortium website and QM Resource Definitions on the Open
Services for Lifecycle Collaboration (OSLC) website.

Examples

Add, Get, and Remove Traceability Links from a Test Case to a Requirement

This example shows how to add, remove, and get OSLC requirement resources linked to a test case
resource with a previously configured OSLC client.

After you have created and configured an OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test case resource type.

myQueryCapability = getQueryService(myClient,'TestCase');

Submit a query request to the service provider for the available test case resources.

testCases = queryTestCases(myQueryCapability)

testCases =

 1×5 TestCase array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Retrieve the requirement resources linked to one of the test cases. Fetch the resource properties
from the service provider for the test case.

myTestCase = testCases(1);
fetch(myTestCase,myClient);
reqs = getRequirementLinks(myTestCase)

 removeRequirementLink

1-235

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions

reqs =

 Requirement with properties:

 ResourceUrl: 'https://localhost:9443/rm/resources/_aQ1gRg8bEeuLWbFe'
 Dirty: 1
 IsFetched: 0
 Title: ''
 Identifier: ''

Remove the existing link to the requirement resource from the test case resource. Commit the
changes to the service provider.

removeRequirementLink(myTestCase,reqs.ResourceUrl);
status = commit(myTestCase,myClient)

status =

 StatusCode enumeration

 OK

To add a link to a requirement, in the OSLC service provider, locate the requirement resource that
you want to link to the test case resource. Identify the resource URL. Create a variable URL and set
the value of the variable to the requirement URL that you found in the service provider.

URL = 'https://localhost:9443/rm/resources/_oJNtgWrqEeup0a6t';

Create a traceability link between the requirement resource and the test case. Commit the change to
the service provider.

addRequirementLink(myTestCase,URL);
status = commit(myTestCase,myClient)

status =

 StatusCode enumeration

 OK

View the test case in the system browser.

show(myTestCase)

Input Arguments
testResource — OSLC test resource
oslc.qm.TestCase object | oslc.qm.TestScript object

OSLC test resource, specified as an oslc.qm.TestCase or oslc.qm.TestScript object.

requirementURL — Requirement resource URL
character vector

Requirement or requirement collection resource URL, specified as a character vector.

1 Functions

1-236

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.qm.TestCase | oslc.qm.TestScript |
oslc.rm.RequirementCollection | addRequirementLink | getRequirementLinks

 removeRequirementLink

1-237

removeResourceProperty
Package: oslc.rm

Remove resource property from local OSLC resource object

Syntax
removeResourceProperty(resource,propertyName,rdfResource)

Description
removeResourceProperty(resource,propertyName,rdfResource) removes the RDF/XML
element with the name propertyName and rdf:resource attribute set to rdfResource from the
locally stored RDF/XML data for the Open Services for Lifecycle Collaboration (OSLC) resource
specified by resource. Use the commit function to apply the change to the service provider. For
more information about RDF/XML elements, see An XML Syntax for RDF on the World Wide Web
Consortium website.

Examples

Add, Get, and Remove Properties from OSLC Resources

This example shows how to add, get, and remove properties from an existing OSLC requirement
resource.

Create and configure the OSLC client myClient as described in “Create and Configure an OSLC
Client for the Requirements Management Domain” on page 2-3. Then query the service provider
for requirements and assign an oslc.rm.Requirement object to the variable myReq as described in
“Submit a Query Request with Query Capability” on page 1-209.

Retrieve the full resource data from the service provider for the requirement resource myReq.

status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

The requirement myReq has a linked requirement with an implementedBy relationship. Get the
rdf:resource value for the oslc_rm:implementedBy property for the requirement resource
myReq.

linkedReq = getResourceProperty(myReq,'oslc_rm:implementedBy')

linkedReq =

 1×1 cell array

 {'https://localhost:9443/rm/resources/_72lxMWJREeup0...'}

1 Functions

1-238

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax

Change the relationship between the linked requirement and myReq from implementedBy to
decomposedBy. Remove the oslc_rm:implementedBy property and add an
oslc_rm:decomposedBy property.

removeResourceProperty(myReq,'oslc_rm:implementedBy',linkedReq)
addResourceProperty(myReq,'oslc_rm:decomposedBy',linkedReq)

Get the text contents for the dcterms:title property.

title = getProperty(myReq,'dcterms:title')

title =

 'My New Requirement'

Change the title to My New Requirement (Edited). Confirm the changes.

setProperty(myReq,'dcterms:title','My New Requirement (Edited)')
title = getProperty(myReq,'dcterms:title')

title =

 'My New Requirement (Edited)'

Add a new text property to the requirement with the tag dcterms:description. Confirm the
changes.

addTextProperty(myReq,'dcterms:description', ...
 'My new requirement edited using the MATLAB OSLC client.');
desc = getProperty(myReq,'dcterms:description')

desc =

 'My new requirement created using the MATLAB OSLC client.'

Commit the changes to the service provider.

status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

View the resource that you edited in the system browser.

show(myReq)

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

 removeResourceProperty

1-239

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

propertyName — OSLC resource property name
character vector

OSLC resource property name, specified as a character vector.

rdfResource — OSLC resource property rdf:resource attribute
character array

OSLC resource property rdf:resource attribute, specified as a character array.

Tips
• For information about OSLC resource properties, see these pages on the OSLC website:

• RM Resource Definitions
• QM Resource Definitions
• CM Resource Definitions

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | getResourceProperty |
addResourceProperty

External Websites
RDF 1.1 XML Syntax

1 Functions

1-240

https://archive.open-services.net/bin/view/Main/RmSpecificationV2.html#RM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/CmSpecificationV2.html#CM_Resource_Definitions
https://www.w3.org/TR/rdf-syntax-grammar/

removeRow
Package: slreq.modeling

Remove Requirements Table block row

Syntax
removeRow(reqTable,row)

Description
removeRow(reqTable,row) removes the row specified by row in the Requirements Table block,
specified by reqTable.

Examples

Remove Requirement from Requirements Table Block

Retrieve the requirements in a Requirements Table block and remove the first requirement.

requirements = getRequirementRows(reqTable);
removeRow(reqTable,requirements(1));

Remove Assumption from Requirements Table Block

Retrieve the assumptions in a Requirements Table block and remove the first assumption.

assumptions = getAssumptionRows(reqTable);
removeRow(reqTable,assumptions(1));

Input Arguments
reqTable — Requirements Table block
RequirementsTable object

Requirements Table block, specified as a RequirementsTable object.

row — Requirement or assumption
RequirementRow object | AssumptionRow object

Requirement or assumption in a Requirements Table block, specified as a RequirementRow or
AssumptionRow object. To retrieve the row, use getRequirementRows, getAssumptionRows, or
getChildren.

 removeRow

1-241

Tips
• If you remove a row that has children, the child rows are also removed.

Version History
Introduced in R2022a

See Also
Functions
getRequirementRows | getAssumptionRows | addAssumptionRow | addRequirementRow

Objects
RequirementsTable

1 Functions

1-242

slreq.resetViewSettings
Reset saved view settings

Syntax
slreq.resetViewSettings('all')
slreq.resetViewSettings('editor')
slreq.resetViewSettings(ModelName)

Description
slreq.resetViewSettings('all') resets all saved view settings.

slreq.resetViewSettings('editor') resets all saved view settings for the Requirements
Editor.

slreq.resetViewSettings(ModelName) resets all saved view settings for the model specified by
ModelName.

Input Arguments
ModelName — Model name
character vector

Simulink model name, specified as a character vector.
Example: 'vdp', 'f14'

Version History
Introduced in R2018b

See Also
Requirements Editor

 slreq.resetViewSettings

1-243

rmi
Interact programmatically with Requirements Management Interface

Syntax
reqlinks = rmi('createEmpty')
reqlinks = rmi('get', object)
reqlinks = rmi('get', sig_builder, group_idx)
rmi('set', model, reqlinks)
rmi('set', sig_builder, reqlinks, group_idx)
rmi('cat', model, reqlinks)
cnt = rmi('count', object)
rmi('clearAll', object)
rmi('clearAll', object, 'deep')
rmi('clearAll', object, 'noprompt')
rmi('clearAll', object, 'deep', 'noprompt')

cmdStr = rmi('navCmd', object)
[cmdStr, titleStr] = rmi('navCmd', object)
object = rmi('guidlookup', model, guidStr)
rmi('highlightModel', object)
rmi('unhighlightModel', object)
rmi('view', object, index)
dialog = rmi('edit', object)
guidStr = rmi('guidget', object)

rmi('report', model)
rmi('report', matlabFilePath)
rmi('report', dictionaryFile)
rmi('projectreport')

rmi setup
rmi register linktypename
rmi unregister linktypename
rmi linktypelist

number_problems = rmi('checkdoc')
number_problems = rmi('checkdoc', docName)
rmi('check', matlabFilePath)
rmi('check', dictionaryFile)

rmi('doorssync', model)
[objHs, parentIdx, isSf, objSIDs] = rmi('getObjectsInModel', model)
[objName, objType] = rmi('getObjLabel', object)

rmi('setDoorsLabelTemplate', template)
template = rmi('getDoorsLabelTemplate')
label = rmi('doorsLabel', moduleID, objectID)
totalModifiedLinks = rmi('updateDoorsLabels', model)

1 Functions

1-244

Description
reqlinks = rmi('createEmpty') creates an empty instance of the requirement links data
structure.

reqlinks = rmi('get', object) returns the requirement links data structure for object.

reqlinks = rmi('get', sig_builder, group_idx) returns the requirement links data
structure for the Signal Builder group specified by the index group_idx.

rmi('set', model, reqlinks) sets reqlinks as the requirements links for model.

rmi('set', sig_builder, reqlinks, group_idx) sets reqlinks as the requirements links
for the signal group group_idx in the Signal Builder block sig_builder.

rmi('cat', model, reqlinks) adds the requirements links in reqlinks to existing
requirements links for model.

cnt = rmi('count', object) returns the number of requirements links for object.

rmi('clearAll', object) deletes all requirements links for object.

rmi('clearAll', object, 'deep') deletes all requirements links in the model containing
object.

rmi('clearAll', object, 'noprompt') deletes all requirements links for object and does not
prompt for confirmation.

rmi('clearAll', object, 'deep', 'noprompt') deletes all requirements links in the model
containing object and does not prompt for confirmation.

cmdStr = rmi('navCmd', object) returns the MATLAB command cmdStr used to navigate to
object.

[cmdStr, titleStr] = rmi('navCmd', object) returns the MATLAB command cmdStr and
the title titleStr that provides descriptive text for object.

object = rmi('guidlookup', model, guidStr) returns the object name in model that has
the globally unique identifier guidStr.

rmi('highlightModel', object) highlights all of the objects in the parent model of object that
have requirement links.

rmi('unhighlightModel', object) removes highlighting of objects in the parent model of
object that have requirement links.

rmi('view', object, index) accesses the requirement numbered index in the requirements
document associated with object.

dialog = rmi('edit', object) displays the Requirements dialog box for object and returns
the handle of the dialog box.

guidStr = rmi('guidget', object) returns the globally unique identifier for object. A
globally unique identifier is created for object if it lacks one.

rmi('report', model) generates a Requirements Traceability report in HTML format for model.

 rmi

1-245

rmi('report', matlabFilePath) generates a Requirements Traceability report in HTML format
for the MATLAB code file specified by matlabFilePath.

rmi('report', dictionaryFile) generates a Requirements Traceability report in HTML format
for the Simulink data dictionary specified by dictionaryFile.

rmi('projectreport') generates a Requirements Traceability report in HTML format for the
current project. The top-level page of this report has HTTP links to reports for each project item that
has requirements traceability associations. For more information, see “Create Requirements
Traceability Report for A Project”.

rmi setup configures RMI for use with your MATLAB software and installs the interface for use with
the IBM Rational DOORS software.

rmi register linktypename registers the custom link type specified by the function
linktypename. For more information, see “Custom Link Type Registration”.

rmi unregister linktypename removes the custom link type specified by the function
linktypename. For more information, see “Custom Link Type Registration”.

rmi linktypelist displays a list of the currently registered link types. The list indicates whether
each link type is built-in or custom, and provides the path to the function used for its registration.

number_problems = rmi('checkdoc') checks validity of links to Simulink from a requirements
document in Microsoft Word, Microsoft Excel, or IBM Rational DOORS. It prompts for the
requirements document name, returns the total number of problems detected, and opens an HTML
report in the MATLAB Web browser. For more information, see “Validate Requirements Links in a
Requirements Document”.

number_problems = rmi('checkdoc', docName) checks validity of links to Simulink from the
requirements document specified by docName. It returns the total number of problems detected and
opens an HTML report in the MATLAB Web browser. For more information, see “Validate
Requirements Links in a Requirements Document”.

rmi('check', matlabFilePath) checks consistency of traceability links associated with MATLAB
code lines in the .m file matlabFilePath, and opens an HTML report in the MATLAB Web browser.

rmi('check', dictionaryFile) checks consistency of traceability links associated with the
Simulink data dictionary dictionaryFile, and opens an HTML report in the MATLAB Web browser.

rmi('doorssync', model) opens the DOORS synchronization settings dialog box, where you can
customize the synchronization settings and synchronize your model with an open project in an IBM
Rational DOORS database.

[objHs, parentIdx, isSf, objSIDs] = rmi('getObjectsInModel', model) returns a list
of Simulink objects that may be considered for inclusion in the IBM Rational DOORS surrogate
module.

[objName, objType] = rmi('getObjLabel', object) returns Simulink object Name and
Type information for the Simulink object that you link to with a third-party requirements
management application.

rmi('setDoorsLabelTemplate', template) specifies a new custom template for labels of
requirements links to IBM Rational DOORS. The default label template contains the section number

1 Functions

1-246

and object heading for the DOORS requirement link target. To revert the link label template back to
the default, enter rmi('setDoorsLabelTemplate', '') at the MATLAB command prompt.

template = rmi('getDoorsLabelTemplate') returns the currently specified custom template
for labels of requirements links to IBM Rational DOORS.

label = rmi('doorsLabel', moduleID, objectID) generates a label for the requirements
link to the IBM Rational DOORS object specified by objectID in the DOORS module specified by
moduleID, according to the current template.

totalModifiedLinks = rmi('updateDoorsLabels', model) updates all IBM Rational DOORS
requirements links labels in model according to the current template.

Examples

Requirements Links Management in Example Model

Get a requirement associated with a block in the slvnvdemo_fuelsys_officereq model, change
its description, and save the requirement back to that block. Define a new requirement link and add it
to the existing requirements links in the block.

Get requirement link associated with the Airflow calculation block in the
slvnvdemo_fuelsys_officereq example model.

slvnvdemo_fuelsys_officereq;
blk_with_req = ['slvnvdemo_fuelsys_officereq/fuel rate controller/'...
'Airflow calculation']
reqts = rmi('get', blk_with_req);

Change the description of the requirement link.

reqts.description = 'Mass airflow estimation';

Save the changed requirement link description for the Airflow calculation block.

addpath(fullfile(matlabroot,'toolbox','slrequirements',...
'slrequirementsdemos','fuelsys_req_docs'))
rmi('set', blk_with_req, reqts);

Create new requirement link to example document fuelsys_requirements2.htm.

new_req = rmi('createempty');
new_req.doc = 'fuelsys_requirements2.htm';
new_req.description = 'New requirement';

Add new requirement link to existing requirements links for the Airflow calculation block.

rmi('cat', blk_with_req, new_req);

Requirements Traceability Report for Example Model

Create HTML report of requirements traceability data in example model.

Create an HTML requirements report for the slvnvdemo_fuelsys_officereq example model.

 rmi

1-247

rmi('report', 'slvnvdemo_fuelsys_officereq');

The MATLAB Web browser opens, showing the report.

Labels for Requirements Links to IBM Rational DOORS

Specify a new label template for links to requirements in DOORS, and update labels of all DOORS
requirements links in your model to fit the new template.

Specify a new label template for requirements links to IBM Rational DOORS so that new links to
DOORS objects are labeled with the corresponding module ID, object absolute number, and the value
of the ‘Backup’ attribute.

rmi('setDoorsLabelTemplate', '%m:%n [backup=%<Backup>]');

Specify a new label template for requirements links to IBM Rational DOORS and set the maximum
label length to (for example) 200 characters.

rmi('setDoorsLabelTemplate', '%h %200');

Update existing DOORS requirements link labels to match the new specified template in your model
example_model. When updating labels, DOORS must be running and all linked modules must be
accessible for reading.

rmi('updateDoorsLabels', example_model);

Input Arguments
model — Simulink model or Stateflow chart with which requirements can be associated
name | handle

Simulink model or Stateflow chart with which requirements can be associated, specified as a
character vector or handle.
Example: 'slvnvdemo_officereq'
Data Types: char

object — Model object with which requirements can be associated
name | handle

Model object with which requirements can be associated, specified as a character vector or handle.
Example: 'slvnvdemo_fuelsys_officereq/fuel rate controller/Airflow calculation'
Data Types: char

sig_builder — Signal Builder block containing signal group with requirements traceability
associations
name | handle

Signal Builder block containing signal group with requirements traceability associations, specified as
a character vector or handle.
Data Types: char

1 Functions

1-248

group_idx — Signal Builder group index
integer

Signal Builder group index, specified as a scalar.
Example: 2
Data Types: char

matlabFilePath — MATLAB code file with requirements traceability associations
path

MATLAB code file with requirements traceability associations, specified as the path to the file.
Data Types: char

dictionaryFile — Simulink data dictionary with requirements traceability associations
character vector

Simulink data dictionary with requirements traceability associations, specified as a character vector
containing the file name and, optionally, path of the dictionary.
Data Types: char

guidStr — Globally unique identifier for model object
character vector

Globally unique identifier for model object object, specified as a character vector.
Example: GIDa_59e165f5_19fe_41f7_abc1_39c010e46167
Data Types: char

index — Index number of requirement linked to model object
integer

Index number of requirement linked to model object, specified as an integer.

docName — Requirements document in external application
file name | path

Requirements document in external application, specified as a character vector that represents one of
the following:

• IBM Rational DOORS module ID.
• path to Microsoft Word requirements document.
• path to Microsoft Excel requirements document.

For more information, see “Validate Requirements Links in a Requirements Document”.

label — Label for links to requirements in IBM Rational DOORS
character vector

Label for links to requirements in IBM Rational DOORS, specified as a character vector.
Data Types: char

 rmi

1-249

template — Template label for links to requirements in IBM Rational DOORS
character vector

Template label for links to requirements in IBM Rational DOORS, specified as a character vector.

You can use the following format specifiers to include the associated DOORS information in your
requirements links labels:

%h Object heading
%t Object text
%p Module prefix
%n Object absolute number
%m Module ID
%P Project name
%M Module name
%U DOORS URL
%<ATTRIBUTE_NAME> Other DOORS attribute you specify

Example: '%m:%n [backup=%<Backup>]'
Data Types: char

moduleID — IBM Rational DOORS module
DOORS module ID

IBM Rational DOORS module, specified as the unique DOORS module ID.
Data Types: char

objectID — IBM Rational DOORS object
DOORS object ID

IBM Rational DOORS object in the DOORS module moduleID, specified as the locally unique DOORS
ID.
Data Types: char

Output Arguments
reqlinks — Requirement links data
struct

Requirement links data, returned as a structure array with the following fields:

doc Character vector identifying requirements document

1 Functions

1-250

id Character vector defining location in requirements document. The first
character specifies the identifier type:

First
Character

Identifier Example

? Search text, the first
occurrence of which is located
in requirements document

'?Requirement 1'

@ Named item, such as bookmark
in a Microsoft Word file or an
anchor in an HTML file

'@my_req'

Page or item number '#21'
> Line number '>3156'
$ Worksheet range in a

spreadsheet
'$A2:C5'

linked Boolean value specifying whether the requirement link is accessible for report
generation and highlighting:
1 (default). Highlight model object and include requirement link in reports.
0

description Character vector describing the requirement
keywords Optional character vector supplementing description
reqsys Character vector identifying the link type registration name; 'other' for

built-in link types

cmdStr — Command used to navigate to model object
character vector

Command used to navigate to model object object, returned as a character vector.
Example: rmiobjnavigate('slvnvdemo_fuelsys_officereq.slx',
'GIDa_59e165f5_19fe_41f7_abc1_39c010e46167');

titleStr — Textual description of model object with requirements links
character vector

Textual description of model object with requirements links, returned as a character vector.
Example: slvnvdemo_fuelsys_officereq/.../Airflow calculation/Pumping Constant
(Lookup2D)

guidStr — Globally unique identifier for model object
character vector

Globally unique identifier for model object object, returned as a character vector.
Example: GIDa_59e165f5_19fe_41f7_abc1_39c010e46167

dialog — Requirements dialog box for model object
handle

Requirements dialog box for model object object, returned as a handle to the dialog box.

 rmi

1-251

number_problems — Total count of invalid links detected in external document
integer

Total count of invalid links detected in external document docName.

For more information, see “Validate Requirements Links in a Requirements Document”.

totalModifiedLinks — Total count of DOORS requirements links updated with new label
template
integer

Total count of DOORS requirements links updated with new label template.

objHs — Numeric handles
array

List of numeric handles, returned as an array.

parentIdx — Model hierarchy indices
array

Model hierarchy indices, returned as an array.

isSf — List position to Stateflow object correspondence
array

Logical array that indicates which list positions correspond to which Stateflow objects.

objSIDs — Simulink IDs
array

Session-independent Simulink IDs, returned as an array.

Version History
Introduced in R2006b

See Also
rmipref | rmiobjnavigate | rmidocrename | rmitag | rmimap.map |
RptgenRMI.doorsAttribs

1 Functions

1-252

rmidata.export
Move links from internal to external storage

Syntax
[linkedElements,reqLinks] = rmidata.export
[linkedElements,reqLinks] = rmidata.export(model)

Description
[linkedElements,reqLinks] = rmidata.export moves links stored internally in the currently
open Simulink model to an external SLMX file. The function saves the SLMX file in the same folder as
the model.

[linkedElements,reqLinks] = rmidata.export(model) moves links stored internally in the
specified model to an external SLMX file.

Examples

Export Links to External File for the Current Model

This example shows how to export links that are stored internally in the current model to an external
file.

Open the slvnvdemo_fuelsys_officereq_internal model.

open_system("slvnvdemo_fuelsys_officereq_internal");

Export the links to an external file.

[linkedElements,reqLinks] = rmidata.export

Exporting requirement links from "slvnvdemo_fuelsys_officereq_internal"...

linkedElements = 16

reqLinks = 16

Export Links to External File

This example shows how to export links that are stored internally in a model to an external file.

Open the slvnvdemo_fuelsys_officereq_internal model.

model = "slvnvdemo_fuelsys_officereq_internal";
open_system(model);

Export the links to an external file.

 rmidata.export

1-253

[linkedElements,reqLinks] = rmidata.export(model)

linkedElements = 16

reqLinks = 16

Input Arguments
model — Name or handle of model
string scalar | character vector | model handle

Name or handle of a Simulink model, specified as a string scalar, character vector, or model handle.

Output Arguments
linkedElements — Number of linked model elements
double array

Number of linked model elements, returned as a double array.

reqLinks — Number of requirement links in model
double array

Number of requirements links in the model, returned as a double array.

Version History
Introduced in R2011b

See Also
rmi | rmidata.save | rmimap.map

Topics
“Requirements Link Storage”

1 Functions

1-254

rmimap.map
Associate link set with model

Syntax
rmimap.map(model,myLinkSet)
rmimap.map(model,"undo")
rmimap.map(model,"clear")

Description
rmimap.map(model,myLinkSet) associates the link set myLinkSet with the Simulink model
model.

rmimap.map(model,"undo") reverts the link set mapping to the previously stored mapping for the
Simulink model. For more information, see “Link Set Mapping” on page 1-256.

rmimap.map(model,"clear") reverts the link set mapping to the default mapping. For more
information, see “Default Link Set Mapping” on page 1-256.

Examples

Associate a Link Set with a Simulink Model

This example shows how to associate a link set file with a Simulink model.

Open the model. Define the path to the link set file.

model = "slvnvdemo_powerwindowController";
open_system(model);
myLinkSet = fullfile("slvnvdemo_powerwindowRequirements.slmx");

Clear any existing link sets associated with the model.

rmimap.map(model,"clear");

Nothing to clear for ...\slvnvdemo_powerwindowController.slx

Associate the link set with the model.

rmimap.map(model,myLinkSet);

Mapping ...\slvnvdemo_powerwindowController.slx to ...\slvnvdemo_powerwindowRequirements.slmx

Revert to the previously stored link set mapping.

rmimap.map(model,"undo")

Removing C:\Users\jdoe\MATLAB\Examples\slrequirements-ex91255337\slvnvdemo_powerwindowRequirements.slmx for ...\slvnvdemo_powerwindowController.slx

 rmimap.map

1-255

Input Arguments
model — File path of Simulink model
string scalar | character vector

File path of the Simulink model, specified as a string scalar or character vector.

myLinkSet — Full path of SLMX file
string scalar | character vector

Full path of the SLMX file that contains links for the model, specified as a string scalar or character
vector.

More About
Link Set Mapping

Requirements Toolbox maps a link set to a Model-Based Design artifact, such as a Simulink model,
when you associate a link set with the artifact. When you open the artifact, the mapped link sets also
open.

Default Link Set Mapping

The default link set mapping for a Model-Based Design artifact is the link set with the same name as
the artifact in the same folder as the artifact.

Version History
Introduced in R2015a

See Also
rmi | rmidata.save | rmidata.export

Topics
“Requirements Link Storage”

1 Functions

1-256

rmidata.save
Save requirements traceability data in external .slreqx file

Syntax
rmidata.save(model)

Description
rmidata.save(model) saves requirements traceability data for a model in an external .req file.
The model must be configured to store requirements traceability data externally. This function is
equivalent to Save > Save Links Only in the Requirements tab.

Examples

Create New Requirement Link and Save Externally

This example shows how to add a requirement link to an existing example model, and save the model
requirements traceability data in an external file.

Open the slvnvdemo_powerwindowController model.

open_system('slvnvdemo_powerwindowController');

Specify that the model store requirements data externally.

rmipref('StoreDataExternally',1);

Create a new requirements link structure.

newReqLink = rmi('createEmpty');
newReqLink.description = 'newReqLink';

Specify the requirements document that you want to link to from the model. In this case, an example
requirements document is provided.

newReqLink.doc = 'PowerWindowSpecification.docx';

Specify the text of the requirement within the document to which you want to link.

newReqLink.id = '?passenger input consists of a vector with three elements';

Specify that the new requirements link that you created be attached to the Mux4 block of the
slvnvdemo_powerwindowController example model.

rmi('set','slvnvdemo_powerwindowController/Mux4',newReqLink);

Save the new requirement link that you just created in an external .slmx file associated with the
model.

rmidata.save('slvnvdemo_powerwindowController');

 rmidata.save

1-257

This function is equivalent to Save > Save Links Only in the Requirements tab.

To highlight the Mux4 block, turn on requirements highlighting for the
slvnvdemo_powerwindowController example model.

rmi('highlightModel','slvnvdemo_powerwindowController');

You can test your requirements link by right-clicking the Mux4 block. In the context menu, select
Requirements > 1. “newReqLink”.

Close the model.

close_system('slvnvdemo_powerwindowController');

Input Arguments
model — Name or handle of model with requirements links
character vector | handle

Name of model with requirements links, specified as a character vector, or handle to model with
requirements links. The model must be loaded into memory and configured to store requirements
traceability data externally.

If you have a new model with no existing requirements links, configure it for external storage as
described in “Requirements Link Storage”. You can also use rmipref to specify storage settings.

If you have an existing model with internally stored requirements traceability data, convert that data
to external storage as described in “Move Internally Stored Requirements Links to External Storage”.
You can also use rmidata.export to convert existing requirements traceability data to external
storage.
Example: 'slvnvdemo_powerwindowController'
Example: get_param(gcs,'Handle')

Version History
Introduced in R2013b

See Also
rmimap.map | rmidata.export

Topics
“Requirements Link Storage”

1 Functions

1-258

rmidocrename
(Not recommended) Update external requirement document paths and file names

Note Using rmidocrename is not recommended. Use updateDocUri instead.

Syntax
rmidocrename(model,old_path,new_path)

Description
rmidocrename(model,old_path,new_path) updates the link destination for the links associated
with the model model from the external document specified by old_path to the new external
document specified by new_path. Use this function when you change the name or file path of the
external document.

Examples

Change Link Destination

This example shows how to change the link destination for links associated with a Simulink® model.

Open the slvnvdemo_fuelsys_officereq model.

model = "slvnvdemo_fuelsys_officereq";
open_system(model);

Find the links in the model that point to slvnvdemo_FuelSys_DesignDescription.docx and
update the destination to slvnvdemo_FuelSys_DesignDescription_new.docx.

oldpath = "slvnvdemo_FuelSys_DesignDescription.docx";
newpath = "slvnvdemo_FuelSys_DesignDescription_new.docx";
rmidocrename(model,oldpath,newpath);

Processed 16 objects with requirements, 8 out of 16 links were modified.

Input Arguments
model — Name or handle of model
string scalar | character vector | model handle

Name or handle of a Simulink model, specified as a string scalar, character vector, or model handle.

old_path — File path for original external document
string scalar | character vector

File path for the original external document, specified as a string scalar or character vector.

 rmidocrename

1-259

new_path — File path for new external document
string scalar | character vector

File path for the new external document, specified as a string scalar or character vector.

Tips
• If you rename or move an external requirements document file, use updateSrcFileLocation to

update the file name or path of the referenced requirements in the requirement set.

Version History
Introduced in R2009b

Not recommended
Not recommended starting in R2022b

There are no plans to remove rmidocrename. However, the updateDocUri method has these
advantages over rmidocrename and is recommended instead:

• You can use updateDocUri to update link destinations for links that are not associated with a
model.

• You can use updateDocUri to update only the link destinations in a specified link set.
rmidocrename updates all link destinations for links associated with the model.

• Unlike rmidocrename, updateDocUri returns the number of updated links.

See Also
rmi | updateDocUri | updateSrcFileLocation

1 Functions

1-260

rmiobjnavigate
Navigate to model objects

Syntax
rmiobjnavigate(modelPath,modelElement)
rmiobjnavigate(modelPath,modelElement,grpNum)

Description
rmiobjnavigate(modelPath,modelElement) navigates to and highlights the model element
specified by modelElement in the Simulink model specified by the path modelPath.

rmiobjnavigate(modelPath,modelElement,grpNum) navigates to the signal group number
grpNum of a Signal Builder block.

Examples

Navigate to a Simulink Model Element

This example shows how to navigate to a Simulink® model element.

Open the slvnvdemo_fuelsys_officereq example model.

model = "slvnvdemo_fuelsys_officereq";
open_system(model);

Get a handle to the MAP Sensor block.

blockHandle = get_param("slvnvdemo_fuelsys_officereq/MAP sensor","Handle");

Navigate to the MAP Sensor block.

rmiobjnavigate(model,blockHandle);

Navigate to a Signal Builder Block

This example shows how to navigate to a Simulink® Signal Builder block signal group.

Open the slvnvdemo_fuelsys_officereq model.

model = "slvnvdemo_fuelsys_officereq";
open_system(model);

Get a handle to the Test inputs Signal Builder block.

blockHandle = get_param("slvnvdemo_fuelsys_officereq/Test inputs","Handle");

Navigate to the Test inputs block and open the second signal group in the block.

 rmiobjnavigate

1-261

rmiobjnavigate(model,blockHandle,2)

Input Arguments
modelPath — Simulink model name or path
string scalar | character vector

Simulink model name or path, specified as a string scalar or a character vector. This argument must
be a full path to a Simulink model file or a Simulink model file name that can be resolved on the
MATLAB path.

modelElement — Model element ID
string scalar | character vector

Model element ID, specified as a string scalar or a character vector.

1 Functions

1-262

grpNum — Signal group number for Signal Builder block
double array

Signal group number for Signal Builder block, specified as a double array.

Version History
Introduced in R2010b

See Also
rmi

Topics
“Use the rmiobjnavigate Function”

 rmiobjnavigate

1-263

rmipref
Get or set RMI preferences stored in prefdir

Syntax
rmipref

currentVal = rmipref(prefName)

previousVal = rmipref(Name,Value)

Description
rmipref returns a list of the Name,Value pairs that correspond to the Requirements Management
Interface (RMI) preference names and accepted values.

currentVal = rmipref(prefName) returns the current value of the preference specified by
prefName.

previousVal = rmipref(Name,Value) sets a new value for the RMI preference specified by
Name, and returns the previous value of that RMI preference.

Examples

References to Simulink Model in External Requirements Documents

Choose the type of reference that the RMI uses when it creates links to your model from external
requirements documents. The reference to your model can be either the model file name or the full
absolute path to the model file.

The value of the 'ModelPathReference' preference determines how the RMI stores references to
your model in external requirements documents. To view the current value of this preference, enter
the following code at the MATLAB command prompt.

currentVal = rmipref('ModelPathReference')

The default value of the 'ModelPathReference' preference is 'none'.

currentVal =

none

This default value specifies that the RMI uses only the model file name in references to your model
that it creates in external requirements documents.

Automatic Application of User Keywords to Selection-Based Requirements Links

Configure the RMI to automatically apply a specified list of user keyword keywords to new selection-
based requirements links that you create.

1 Functions

1-264

Specify that the user keywords design and reqts apply to new selection-based requirements links
that you create.

previousVal = rmipref('SelectionLinkKeyword','design,reqts')

When you specify a new value for an RMI preference, rmipref returns the previous value of that
RMI preference. In this case, previousVal is an empty character vector, the default value of the
'SelectionLinkKeyword' preference.

previousVal =

 ''

View the currently specified value for the 'SelectionLinkKeyword' preference.

currentVal = rmipref('SelectionLinkKeyword')

The function returns the currently specified comma-separated list of user keywords.

currentVal =

design,reqts

These user keywords apply to all new selection-based requirements links that you create.

Internal Storage of Requirements Traceability Data

Configure the RMI to embed requirements links data in the model file instead of in a separate .req
file.

Note If you have existing requirements links for your model that are stored internally, you need to
move these links into an external .req file before you change the storage settings for your
requirements traceability data. See “Move Internally Stored Requirements Links to External Storage”
for more information.

If you would like to embed requirements traceability data in the model file, set the
'StoreDataExternally' preference to 0.

previousVal = rmipref('StoreDataExternally',0)

When you specify a new value for an RMI preference, rmipref returns the previous value of that
RMI preference. By default, the RMI stores requirements links data externally in a separate .req file,
so the previous value of this preference was 1.

previousVal =

 1

After you set the 'StoreDataExternally' preference to 0, your requirements links are embedded
in the model file.

currentVal = rmipref('StoreDataExternally')

 rmipref

1-265

currentVal =

 0

Input Arguments
prefName — RMI preference name
'BiDirectionalLinking' | 'FilterRequireKeywords' | 'CustomSettings' | ...

RMI preference name, specified as the corresponding Name character vector listed in “Name-Value
Pair Arguments” on page 1-266.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes (' ').
Example: 'BiDirectionalLinking',true enables bidirectional linking for your model, so that
when you create a selection-based link to a requirements document, the RMI creates a corresponding
link to your model from the requirements document.

BiDirectionalLinking — Bidirectional selection linking preference
false (default) | true

Bidirectional selection linking preference, specified as a numeric or logical 1 (true) or 0 (false).

This preference specifies whether to simultaneously create return link from target to source when
creating link from source to target. This setting applies only for requirements document types that
support selection-based linking.
Data Types: logical

CustomSettings — Preference for storing custom settings
inUse: 0 (default) | structure array of custom field names and settings

Preference for storing custom settings, specified as a structure array. Each field of the structure array
corresponds to the name of your custom preference, and each associated value corresponds to the
value of that custom preference.
Data Types: struct

DocumentPathReference — Preference for path format of links to requirements documents
from model
'modelRelative' (default) | 'absolute' | 'pwdRelative' | 'none'

Preference for path format of links to requirements documents from model, specified as one of the
following values.

Value Document reference contains...
'absolute' full absolute path to requirements document.
'pwdRelative' path relative to MATLAB current folder.
'modelRelative' path relative to model file.
'none' document file name only.

1 Functions

1-266

For more information, see “Document Path Storage”.
Data Types: char

DuplicateOnCopy — Preference for copying requirements links with model objects
true (default) | false

Preference for copying requirements links along with model objects, specified as a numeric or logical
1 (true) or 0 (false).

This preference specifies whether requirements links should be duplicated when copying Simulink
and Stateflow objects. When set to false, links are duplicated only when you highlight links in the
source model where the model objects are copied from.
Data Types: logical

FilterEnable — Preference to enable filtering by user keyword keywords
false (default) | true

Preference to enable filtering by user keyword keywords, specified as a numeric or logical 1 (true)
or 0 (false). When you filter by user keyword keywords, you can include or exclude subsets of
requirements links in highlighting or reports. You can specify user keyword keywords for
requirements links filtering in the 'FilterRequireKeywords' and 'FilterExcludeKeywords'
preferences. For more information about requirements filtering, see “Filter Requirements with User
Keywords”.
Data Types: logical

FilterRequireKeywords — Preference for user keyword keywords for requirements links
empty character vector (default) | comma-separated list of user keyword keywords

Preference for user keyword keywords for requirements links, specified as a comma-separated list of
words or phrases in a character vector. These user keywords apply to all new requirements links you
create. Requirements links with these user keywords are included in model highlighting and reports.
For more information about requirements filtering, see “Filter Requirements with User Keywords”.
Data Types: char

FilterExcludeKeywords — Preference to exclude certain requirements links from model
highlighting and reports
empty character vector (default) | comma-separated list of user keyword keywords

Preference to exclude certain requirements links from model highlighting and reports, specified as a
comma-separated list of user keyword keywords. Requirements links with these user keywords are
excluded from model highlighting and reports. For more information about requirements filtering, see
“Filter Requirements with User Keywords”.
Data Types: char

FilterMenusByKeywords — Preference to disable labels of requirements links with
designated user keywords
false (default) | true

Preference to disable labels of requirements links with designated user keywords, specified as a
numeric or logical 1 (true) or 0 (false). When set to true, if a requirement link has a user keyword
designated in 'FilterExcludeKeywords' or 'FilterRequireKeywords', that requirements link

 rmipref

1-267

will be disabled in the Requirements context menu. For more information about requirements
filtering, see “Filter Requirements with User Keywords”.
Data Types: logical

FilterConsistencyChecking — Preference to filter Model Advisor requirements
consistency checks with designated user keywords
false (default) | true

Preference to filter Model Advisor requirements consistency checks with designated user keywords,
specified as a numeric or logical 1 (true) or 0 (false). When set to true, Model Advisor
requirements consistency checks include requirements links with user keywords designated in
'FilterRequireKeywords' and excludes requirements links with user keywords designated in
'FilterExcludeKeywords'. For more information about requirements filtering, see “Filter
Requirements with User Keywords”.
Data Types: logical

KeepSurrogateLinks — Preference to keep DOORS surrogate links when deleting all
requirements links
empty (default) | false | true

Preference to keep DOORS surrogate links when deleting all requirements links, specified as a
numeric or logical 1 (true) or 0 (false). When set to true, right-clicking Requirements at This
Level > Delete All Outgoing Links deletes all requirements links including DOORS surrogate
module requirements links. When not set to true or false, right-clicking Requirements at This
Level > Delete All Outgoing Links opens a dialog box with a choice to keep or delete DOORS
surrogate links.
Data Types: logical

LinkIconFilePath — Preference to use custom image file as requirements link icon
empty character vector (default) | full image file path

Preference to use custom image file as requirements link icon, specified as full path to icon or small
image file. This image will be used for requirements links inserted in external documents.
Data Types: char

LoginProvider — Custom authentication callback function for integration with web-based
services
character vector

Custom authentication callback function for integration with web-based services, specified as a
character vector.

If your network requires advanced authentication that the default authentication process does not
support, use this argument to register a custom authentication callback function. For example, if you
register a custom authentication callback function and then use slreq.dngConfigure, the function
calls your custom function to authenticate the connection with the IBM DOORS Next server. For more
information, see the “Tips” on page 1-71 section of slreq.dngConfigure.

Note The custom authentication callback function should take this form:

1 Functions

1-268

function [success,cookies] = myCustomLoginProvider(server,options)
% Provide your implementation here
end

The custom authentication function should return two arguments: success status and cookies
received from the server.

Example: "myCustomLoginProvider"

ModelPathReference — Preference for path format in links to model from requirements
documents
'none' (default) | 'absolute'

Preference for path format in links to model from requirements documents, specified as one of the
following values.

Value Model reference contains...
'absolute' full absolute path to model.
'none' model file name only.

Data Types: char

OslcUseGlobalConfig — Preference to allow global configuration
false or 0 (default) | true or 1

Preference to allow global configurations when configuring a MATLAB session for integration with
IBM DOORS Next, specified as a numeric or logical 1 (true) or 0 (false).
Data Types: logical

ReportDocDetails — Preference to include extra detail from requirements documents in
generated reports
false (default) | true

Preference to include extra detail from requirements documents in generated reports, specified as a
numeric or logical 1 (true) or 0 (false). When set to true, generated requirements reports load
linked requirements documents to include additional information about linked requirements. This
preference applies to Microsoft Word, Microsoft Excel, and IBM Rational DOORS requirements
documents only.
Data Types: logical

ReportFollowLibraryLinks — Preference to include requirements links in referenced
libraries in generated report
false (default) | true

Preference to include requirements links in referenced libraries in generated report, specified as a
numeric or logical 1 (true) or 0 (false). When set to true, generated requirements reports include
requirements links in referenced libraries.
Data Types: logical

ReportHighlightSnapshots — Preference to include highlighting in model snapshots in
generated report
true (default) | false

 rmipref

1-269

Preference to include highlighting in model snapshots in generated report, specified as a numeric or
logical 1 (true) or 0 (false). When set to true, snapshots of model objects in generated
requirements reports include highlighting of model objects with requirements links.
Data Types: logical

ReportIncludeKeywords — Preference to list user keywords for requirements links in
generated reports
false (default) | true

Preference to list user keywords for requirements links in generated reports, specified as a numeric
or logical 1 (true) or 0 (false). When set to true, generated requirements reports include user
keywords specified for each requirement link. For more information about requirements filtering, see
“Filter Requirements with User Keywords”.
Data Types: logical

ReportLinkToObjects — Preference to include links to model objects in generated
requirements reports
false (default) | true

Preference to include links to model objects in generated requirements reports, specified as a
numeric or logical 1 (true) or 0 (false). When set to true, generated requirements reports include
links to model objects. These links work only if the MATLAB internal HTTP server is active.
Data Types: logical

ReportNoLinkItems — Preference to include model objects with no requirements links in
generated requirements reports
false (default) | true

Preference to include model objects with no requirements links in generated requirements reports,
specified as a numeric or logical 1 (true) or 0 (false). When set to true, generated requirements
reports include lists of model objects that have no requirements links.
Data Types: logical

ReportUseDocIndex — Preference to include short document ID instead of full path to
document in generated requirements reports
false (default) | true

Preference to include short document ID instead of full path to document in generated requirements
reports, specified as a numeric or logical 1 (true) or 0 (false). When set to true, generated
requirements reports include short document IDs, when specified, instead of full paths to
requirements documents.
Data Types: logical

SelectionLinkDoors — Preference to include IBM Rational DOORS selection link option in
Requirements context menu
true (default) | false

Preference to include IBM Rational DOORS selection link option in Requirements context menu,
specified as a numeric or logical 1 (true) or 0 (false).
Data Types: logical

1 Functions

1-270

SelectionLinkExcel — Preference to include Microsoft Excel selection link option in
Requirements context menu
true (default) | false

Preference to include Microsoft Excel selection link option in Requirements context menu, specified
as a numeric or logical 1 (true) or 0 (false).
Data Types: logical

SelectionLinkKeyword — Preference for user keywords to apply to new selection-based
requirements links
empty character vector (default) | comma-separated list of user keyword keywords

Preference for user keywords to apply to new selection-based requirements links, specified as a
comma-separated list of words or phrases in a character vector. These user keywords automatically
apply to new selection-based requirements links that you create. For more information about
requirements filtering, see “Filter Requirements with User Keywords”.
Data Types: char

SelectionLinkWord — Preference to include Microsoft Word selection link option in
Requirements context menu
true (default) | false

Preference to include Microsoft Word selection link option in Requirements context menu, specified
as a numeric or logical 1 (true) or 0 (false).
Data Types: logical

StoreDataExternally — Preference to store requirements links data in external .req file
false (default) | true

Preference to store requirements links data in external .req file, specified as a numeric or logical 1
(true) or 0 (false). This setting applies to all new models and to existing models that do not yet
have requirements links. For more information about storage of requirements links data, see
“Requirements Link Storage”.
Data Types: logical

UseActiveXButtons — Preference to use legacy ActiveX® buttons in Microsoft Office
requirements documents
false (default) | true

Preference to use legacy ActiveX buttons in Microsoft Office requirements documents, specified as a
numeric or logical 1 (true) or 0 (false). The default value of this preference is false; requirements
links are URL-based by default. ActiveX requirements navigation is supported for backward
compatibility.
Data Types: logical

Output Arguments
currentVal — Current value of the RMI preference specified by prefName
true | false | 'absolute' | 'none' | ...

 rmipref

1-271

Current value of the RMI preference specified by prefName. RMI preference names and their
associated possible values are listed in “Name-Value Pair Arguments” on page 1-266.

previousVal — Previous value of the RMI preference specified by prefName
true | false | 'absolute' | 'none' | ...

Previous value of the RMI preference specified by prefName. RMI preference names and their
associated possible values are listed in “Name-Value Pair Arguments” on page 1-266.

Version History
Introduced in R2013a

See Also
rmi

Topics
“Requirements Settings”

1 Functions

1-272

rmiref.insertRefs
(Not recommended) Insert backlinks in Microsoft Office documents

Note Using rmiref.insertRefs is not recommended. Use updateBacklinks instead.

Syntax
[links,matches,inserted] = rmiref.insertRefs(model,type)

Description
[links,matches,inserted] = rmiref.insertRefs(model,type) inserts navigation
backlinks in the active document of type type to match slreq.Link objects that point from the
document to the Simulink model model. You can use these backlinks to navigate from the external
document to the Simulink model. The function returns the number of links associated with the model,
the number of those links that also point to the external requirements document, and the number of
backlinks inserted in the requirements document. For more information, see “Manage Navigation
Backlinks in External Requirements Documents”.

Examples

Insert Backlinks in Microsoft Word Document

This example shows how to insert backlinks in a Microsoft® Word document.

Open a model called myModel.

open_system("myModel");

Open a Microsoft Word document that contains requirements called myRequirementsDoc.docx

open("myRequirementsDoc.docx");

Insert navigation backlinks in the document for the model myModel. Return the total number of links
associated with the model, the number of links that navigate to the document, and the number of
links inserted in the document.

[links,matches,inserted] = rmiref.insertRefs("myModel","word")

links = 16
matches = 8
inserted = 8

Input Arguments
model — Name or handle of Simulink model
string scalar | character vector | model handle

Name or handle of a Simulink model, specified as a string scalar, character vector, or model handle.

 rmiref.insertRefs

1-273

type — External requirements document type
"word" | "excel"

External requirements document type, specified as "word" or "excel".

Output Arguments
links — Number of links associated with Simulink model
double array

Number of links associated with the Simulink model, returned as a double array.

matches — Number of links associated with external document
double array

Number of links in the Simulink model that are associated with the external requirements document,
returned as a double array.

inserted — Number of backlinks inserted in external document
double array

Number of backlinks inserted in the external requirements document, returned as a double array.

Version History
Introduced in R2011a

Not recommended
Not recommended starting in R2022b

There are no plans to remove rmiref.insertRefs. However, the updateBacklinks method has
these advantages over rmiref.insertRefs and is recommended instead:

• You can use updateBacklinks to insert backlinks that correspond to links that are not
associated with a model.

• You can use updateBacklinks to insert backlinks in documents in third-party tools other than
Microsoft Word and Microsoft Excel.

See Also
rmiref.removeRefs | updateBacklinks

Topics
“Manage Navigation Backlinks in External Requirements Documents”

1 Functions

1-274

rmiref.removeRefs
Remove backlinks to models from requirements documents

Syntax
count = rmiref.removeRefs(doc_type)

Description
count = rmiref.removeRefs(doc_type) removes all backlinks to models from the currently
active external requirements document of type doc_type, and returns the number of backlinks
removed. For more information about backlinks, see “Manage Navigation Backlinks in External
Requirements Documents”.

Note You can only remove backlinks from one external document at a time.

Examples

Remove Backlinks from a Microsoft Word Document

This example shows how to remove backlinks from a Microsoft Word document.

Open the “Redirect Direct Links to Imported Requirements Programmatically” on page 3-98
example.

openExample(['slrequirements/' ...
 'RedirectDirectLinksToImportedRequirementsByAPIExample'])

Open the FuelSysWithReqLinks model.

open_system("FuelSysWithReqLinks.slx")

The model contains direct links to these documents:

• FuelSysDesignDescription.docx
• FuelSysRequirementsSpecification.docx
• FuelSysTestScenarios.xlsx

Open the FuelSysDesignDescription.docx document.

open("FuelSysDesignDescription.docx")

Remove the backlinks from the FuelSysDesignDescription.docx document.

count = rmiref.removeRefs("word")

Removing Simulink references from the current document ...

Current document: fuelsysdesigndescription.docx

 rmiref.removeRefs

1-275

Total references: 6

Remove all Simulink references? y/n

y

Removing ...

count =

 6

Clear the open requirement sets and link sets. Close all open models.

slreq.clear;
bdclose all;

Input Arguments
doc_type — External requirements document type
"Word" | "Excel" | "DOORS"

External requirements document type, specified as "Word", "Excel", or "DOORS".

Note The document type "DOORS" refers to IBM Rational DOORS modules. You cannot use this
function to remove backlinks from IBM DOORS Next modules.

Output Arguments
count — Number of backlinks removed
double

Number of backlinks removed from the external document, returned as a double.

Version History
Introduced in R2011a

See Also
rmiref.insertRefs

Topics
“Manage Navigation Backlinks in External Requirements Documents”

1 Functions

1-276

rmitag
Manage keywords for links

Syntax
rmitag(model,"add",keyword)
rmitag(model,"delete",keyword)
rmitag(model,"replace",keyword,new_keyword)
rmitag(model,"clear",keyword)
rmitag(___ ,doc_name)
rmitag(model,"list")

Description
rmitag(model,"add",keyword) adds the specified keyword keyword to the links associated with
the model, model.

rmitag(model,"delete",keyword) deletes the keyword keyword from all links associated with
the model.

rmitag(model,"replace",keyword,new_keyword) replaces the specified keyword keyword
with the new keyword, new_keyword.

rmitag(model,"clear",keyword) removes the links that have the specified keyword keyword.

rmitag(___ ,doc_name) adds, deletes, or replaces keywords or deletes links where the full or
partial document name matches the argument doc_name.

rmitag(model,"list") lists all keywords for the links associated with model.

Examples

Add Keywords to a Model

This example shows how to add keywords to the links associated with a Simulink® model.

Open the slvnvdemo_fuelsys_officereq model.

open_system("slvnvdemo_fuelsys_officereq");

Add the keyword myTag to the links associated with the model.

rmitag(gcs,"add","myTag");

Processed objects: 16 (16 modified).
Total links: 16 (16 modified).

List the keywords for the links associated with the model.

rmitag(gcs,"list")

 rmitag

1-277

Processed objects: 16, total links: 16, found 4 unique tags:
 myTag: 16
 test: 2
 requirement: 6
 design: 7

Delete Link Keywords

This example shows how to delete keywords from the links associated with a Simulink® model.

Open the slvnvdemo_fuelsys_officereq model.

open_system("slvnvdemo_fuelsys_officereq");

Delete the keyword test from the links associated with the model.

rmitag(gcs,"delete","test");

Processed objects: 16 (2 modified).
Total links: 16 (2 modified).

List the keywords for the links associated with the model.

rmitag(gcs,"list")

Processed objects: 16, total links: 16, found 2 unique tags:
 requirement: 6
 design: 7

Replace Link Keywords

This example shows how to replace keywords for links associated with a Simulink® model.

Open the slvnvdemo_fuelsys_officereq model.

open_system("slvnvdemo_fuelsys_officereq");

Replace the keyword requirement with specification.

rmitag(gcs,"replace","requirement","specification");

Processed objects: 16 (6 modified).
Total links: 16 (6 modified).

List the user keywords for the links associated with the model.

rmitag(gcs,"list")

Processed objects: 16, total links: 16, found 3 unique tags:
 test: 2
 specification: 6
 design: 7

1 Functions

1-278

Delete Links from a Model by Using Keywords

This example shows how to delete links associated with a Simulink® model by using keywords.

Open the slvnvdemo_fuelsys_officereq model.

open_system("slvnvdemo_fuelsys_officereq");

Delete the links associated with the model that have the user keyword design.

rmitag(gcs,"clear","design");

Processed objects: 16 (7 modified).
Total links: 16 (7 cleared).

List the user keywords for the links associated with the model.

rmitag(gcs,"list")

Processed objects: 9, total links: 9, found 2 unique tags:
 test: 2
 requirement: 6

Add Keywords for Direct Links to External Documents

This example shows how to add keywords to the links associated with a Simulink® model that point
to a document.

Open the slvnvdemo_fuelsys_officereq model.

open_system("slvnvdemo_fuelsys_officereq");

Add the keyword myTag to the links associated with the model and point the links to the
slvnvdemo_FuelSys_DesignDescription document.

rmitag(gcs,"add","myTag","slvnvdemo_FuelSys_DesignDescription.docx");

Processed objects: 16 (8 modified).
Total links: 16 (8 modified).

List the keywords for the links associated with the model.

rmitag(gcs,"list")

Processed objects: 16, total links: 16, found 4 unique tags:
 myTag: 8
 test: 2
 requirement: 6
 design: 7

 rmitag

1-279

List Keywords for a Model

This example shows how to list the keywords for the links associated with a Simulink® model.

Open the slvnvdemo_fuelsys_officereq model, then list the link keywords.

open_system("slvnvdemo_fuelsys_officereq");
rmitag(gcs,"list")

Processed objects: 16, total links: 16, found 3 unique tags:
 test: 2
 requirement: 6
 design: 7

Input Arguments
model — Name or handle of Simulink model
string scalar | character vector | model handle

Name or handle to Simulink model that the links are associated with, specified as a string scalar or
character vector that contains the name of the model or a model handle.

keyword — Keyword
string scalar | character vector

Keyword, specified as a string scalar or character vector.

doc_name — External document name
string scalar | character vector

External requirements document name, specified as a string scalar or character vector.

new_keyword — New keyword
string scalar | character vector

New keyword, specified as a string scalar or character vector.

Version History
Introduced in R2010a

See Also
rmi | rmidocrename

Topics
“User Keywords and Requirements Filtering”

1 Functions

1-280

RptgenRMI.doorsAttribs
IBM Rational DOORS attributes in requirements report

Syntax
settings = RptgenRMI.doorsAttribs('show')
tf = RptgenRMI.doorsAttribs('default')
tf = RptgenRMI.doorsAttribs(Name,Value)

Description
settings = RptgenRMI.doorsAttribs('show') returns the DOORS attribute report settings.
The listed attributes are included in generated requirements reports.

tf = RptgenRMI.doorsAttribs('default') restores the default requirements report settings
for DOORS attributes. The function returns 1 if the settings are changed. The default settings are:

• Explicitly include the system attributes Object Heading and Object Text
• Include all other system attributes and user-defined attributes
• Omit the system attribute Created Thru
• Omit system attributes with empty string values
• Omit system attributes that are false

tf = RptgenRMI.doorsAttribs(Name,Value) specifies which DOORS attributes to include in
generated requirements reports. The function returns 1 if the settings are changed without error.

Note This function sets settings used when generating reports for requirements in IBM Rational
DOORS. These settings are not applied for generated reports for requirements in IBM Rational
DOORS Next.

Examples

Show the DOORS Attribute Report Settings

settings = RptgenRMI.doorsAttribs('show')

settings = 5x1 cell
 {'Object Heading' }
 {'Object Text' }
 {'$AllAttributes$'}
 {'$NonEmpty$' }
 {'-Created Thru' }

 RptgenRMI.doorsAttribs

1-281

Restore Default DOORS Attributes Report Settings

If you change the settings for which DOORS attributes to include in the requirements report, you can
restore the default settings.

Change the settings by omitting all attributes other than those that are explicitly included in the
report. Show the changed settings.

tf = RptgenRMI.doorsAttribs('type','none');

Excluding attributes...

settings = RptgenRMI.doorsAttribs('show')

settings = 4x1 cell
 {'Object Heading'}
 {'Object Text' }
 {'$NonEmpty$' }
 {'-Created Thru' }

Restore the settings to default. Show the default settings.

tf = RptgenRMI.doorsAttribs('default');
settings = RptgenRMI.doorsAttribs('show')

settings = 5x1 cell
 {'Object Heading' }
 {'Object Text' }
 {'$AllAttributes$'}
 {'$NonEmpty$' }
 {'-Created Thru' }

The default settings are:

• Explicitly include the system attributes Object Heading and Object Text
• Include all other system attributes and user-defined attributes
• Omit the system attribute Created Thru
• Omit system attributes with empty string values
• Omit system attributes that are false

Include or Omit DOORS Attributes from the Requirements Report by Specifying Type

Specify that generated requirements reports will include only user-defined attributes.

tf = RptgenRMI.doorsAttribs('type','user');

Including user attributes...

Show the settings.

settings = RptgenRMI.doorsAttribs('show')

1 Functions

1-282

settings = 6x1 cell
 {'Object Text' }
 {'$NonEmpty$' }
 {'-Created Thru' }
 {'+Last Modified By'}
 {'+Last Modified On'}
 {'$UserAttributes$' }

Explicitly Include or Omit DOORS Attributes from the Requirements Report

Include the Last Modified By and Last Modified On attributes.

tf = RptgenRMI.doorsAttribs('add','Last Modified By');

Adding Last Modified By...

tf = RptgenRMI.doorsAttribs('add','Last Modified On');

Adding Last Modified On...

Omit the Object Heading attribute from the requirements report.

tf = RptgenRMI.doorsAttribs('remove','Object Heading');

Removing Object Heading...

Show the Current Settings

settings = RptgenRMI.doorsAttribs('show')

settings = 6x1 cell
 {'Object Text' }
 {'$AllAttributes$' }
 {'$NonEmpty$' }
 {'-Created Thru' }
 {'+Last Modified By'}
 {'+Last Modified On'}

Include or Omit Empty User-Defined DOORS Attributes from the Requirements Report

Include empty user-defined attributes in the requirements report.

tf = RptgenRMI.doorsAttribs('nonempty','off')

NonEmpty filter off...

tf = logical
 1

Show the current settings.

settings = RptgenRMI.doorsAttribs('show')

 RptgenRMI.doorsAttribs

1-283

settings = 5x1 cell
 {'Object Text' }
 {'-Created Thru' }
 {'+Last Modified By'}
 {'+Last Modified On'}
 {'$UserAttributes$' }

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'type','all'

type — Types of attributes to include or omit in report
'all' | 'user' | 'none'

Types of DOORS attributes to include or omit from the report, specified as 'all', 'user', or
'none'.
Example: 'type','all'

add — Attributes to add to report
character array

Attributes to add to the generated report, specified as a character array.
Example: 'add','Last Modified By'

Note The entered character array should be the same as a DOORS predefined system attribute or
user-defined attribute.

remove — Attributes to remove from report
character array

Attributes to omit from the generated report, specified as a character array.
Example: 'remove','Object Heading'

Note The entered character array should be the same as a DOORS predefined system attribute or
user-defined attribute.

nonempty — Include or omit empty attributes
'on' | 'off'

Whether to include or omit empty user-defined attributes in the report, specified as 'on' or 'off'.
Empty system-defined attributes are always excluded.

1 Functions

1-284

Example: 'nonempty','on'

Output Arguments
settings — Current DOORS attribute report settings
cell array

Current DOORS attribute report settings, returned as a cell array.

tf — Changed settings success status
1 | 0

Changed settings success status, returned as a 1 or 0 of data type logical.

Version History
Introduced in R2011b

See Also
rmi

 RptgenRMI.doorsAttribs

1-285

setCatalogPath
Package: oslc

Set catalog path for OSLC client

Syntax
setCatalogPath(myClient,path)

Description
setCatalogPath(myClient,path) sets the OSLC client myClient to the catalog path specified
by path.

Examples

Create and Configure an OSLC Client for the Requirements Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the requirements management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Then set the service root and catalog path for
the requirements management domain and the configuration query path.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'/oslc_rm/catalog');
setConfigurationQueryPath(myClient,'gc/oslc-query/configurations');
myClient

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

providers =

 4×1 cell array

 {'OSLC Plugin' }
 {'Model Based Design with OSLC' }
 {'OSLC4RM' }
 {'Interactive Testing (Requirements Management)'}

1 Functions

1-286

setServiceProvider(myClient,'OSLC Plugin');

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/rm/oslc_rm/catalog'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

path — OSLC catalog path
character vector

OSLC catalog path in the specified server and domain, specified as a character vector.
Example: '/oslc_rm/catalog'

Version History
Introduced in R2021a

See Also
oslc.Client | setServer | setServiceRoot | login | setUser

 setCatalogPath

1-287

setConfigurationContext
Package: oslc

Set configuration context for OSLC client

Syntax
setConfigurationContext(myClient,configName)

Description
setConfigurationContext(myClient,configName) sets the OSLC client myClient to the
configuration context specified by configName.

Examples

Create and Configure an OSLC Client for the Requirements Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the requirements management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Then set the service root and catalog path for
the requirements management domain and the configuration query path.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'/oslc_rm/catalog');
setConfigurationQueryPath(myClient,'gc/oslc-query/configurations');
myClient

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

providers =

 4×1 cell array

 {'OSLC Plugin' }
 {'Model Based Design with OSLC' }
 {'OSLC4RM' }
 {'Interactive Testing (Requirements Management)'}

1 Functions

1-288

setServiceProvider(myClient,'OSLC Plugin');

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/rm/oslc_rm/catalog'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

configName — Configuration context name
character vector

Configuration context name to set the OSLC client to, specified as a character vector.

Version History
Introduced in R2021a

See Also
oslc.Client | getConfigurationContextNames | login | setServiceProvider |
getServiceProviderNames | setConfigurationQueryPath

 setConfigurationContext

1-289

setConfigurationQueryPath
Package: oslc

Set configuration query path for OSLC client

Syntax
setConfigurationQueryPath(myClient,path)

Description
setConfigurationQueryPath(myClient,path) sets the OSLC client myClient to the
configuration context query path specified by path.

Examples

Create and Configure an OSLC Client for the Requirements Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the requirements management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Then set the service root and catalog path for
the requirements management domain and the configuration query path.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'/oslc_rm/catalog');
setConfigurationQueryPath(myClient,'gc/oslc-query/configurations');
myClient

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

providers =

 4×1 cell array

 {'OSLC Plugin' }
 {'Model Based Design with OSLC' }
 {'OSLC4RM' }
 {'Interactive Testing (Requirements Management)'}

1 Functions

1-290

setServiceProvider(myClient,'OSLC Plugin');

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/rm/oslc_rm/catalog'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

path — OSLC configuration query path
character vector

OSLC configuration query path in the specified server and domain, specified as a character vector.
Example: 'gc/oslc-query/configurations'

Version History
Introduced in R2021a

See Also
oslc.Client | setConfigurationContext | login | setServiceProvider |
getServiceProviderNames

 setConfigurationQueryPath

1-291

setCustomLoginProvider
Package: oslc

Register custom authentication callback function to OSLC client

Syntax
setCustomLoginProvider(myClient,authenticationFunction)

Description
setCustomLoginProvider(myClient,authenticationFunction) registers a custom
authentication callback function, authenticationFunction, for the OSLC client object myClient.
You can use this function to authenticate an OSLC client object on networks that require advanced
authentication that the default authentication process does not support.

Note The custom authentication callback function should take this form:

function [success,cookies] = myCustomLoginProvider(server,options)
% Provide your implementation here
end

The custom authentication function should return two arguments: success status and cookies
received from the server.

Examples

Authenticate a Client that Requires an Advanced Authentication

This example shows how to authenticate an OSLC client by using a custom authentication function
and custom HTTP options.

Create the OSLC client.

myClient = oslc.Client;

Set the server URL, service root, and catalog path for your service provider.

setServer(myClient,'http://example.com');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'oslc/services/catalog');

Create and enter the user credentials by using the matlab.net.http.Credentials class with a
basic matlab.net.http.AuthenticationScheme object.

creds = matlab.net.http.Credentials('Username','jdoe','Password', ...
'Password1234','scheme',matlab.net.http.AuthenticationScheme.Basic);

Create custom HTTP options by using the matlab.net.http.HTTPOptions class constructor. Set
the Credentials property and certificate information for the custom HTTP options.

1 Functions

1-292

opts = matlab.net.http.HTTPOptions('Credentials',creds, ...
 'VerifyServerName', false, 'CertificateFilename', '')

opts =

 HTTPOptions with properties:

 MaxRedirects: 20
 ConnectTimeout: 10
 UseProxy: 1
 ProxyURI: []
 Authenticate: 1
 Credentials: [1×1 matlab.net.http.Credentials]
 UseProgressMonitor: 0
 SavePayload: 0
 ConvertResponse: 1
 DecodeResponse: 1
 ProgressMonitorFcn: []
 CertificateFilename: ""
 VerifyServerName: 0
 DataTimeout: Inf
 ResponseTimeout: Inf
 KeepAliveTimeout: Inf

Specify the custom HTTP options to authenticate the OSLC client myClient.

setHttpOptions(myClient,opts);

Create a custom authentication callback function called myCustomLoginProvider.

function [success,cookies] = myCustomLoginProvider(server,options)

end

Register the custom authentication callback function with the OSLC client object.

setCustomLoginProvider(myClient,myCustomLoginProvider);

Authenticate the OSLC client object.

login(myClient);

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

authenticationFunction — Custom authentication callback function name
character vector

Custom authentication callback function name, specified as a character vector.
Example: 'myCustomLoginProvider'

 setCustomLoginProvider

1-293

Tips
• If your authentication process requires a particular set of HTTP options, you can either:

• Construct a matlab.net.http.HTTPOptions object and assign it to your OSLC client by
using setHttpOptions, which passes the HTTP options to your custom authentication
callback function.

• Construct the HTTP options internally in your custom authentication callback function.
• If you want to preconfigure the login process with credentials or use a particular authentication

scheme, you can create a matlab.net.http.Credentials object and include it with a
matlab.net.http.HTTPOptions object that you assign to the OSLC client object. For more
information, see “Server Authentication”.

Note Depending on the authentication method used by your server, your custom authentication
callback function might also have to satisfy authentication requirements. For example, you might
have to mimic the form-based authentication required by your authentication server.

• You can unregister all callbacks from an OSLC client object myClient by entering:

setCustomLoginProvider(myClient,'');

Version History
Introduced in R2021b

See Also
oslc.Client | setHttpHeader | setHttpOptions | login | getCustomLoginProvider

Topics
“Server Authentication”

1 Functions

1-294

setHttpHeader
Package: oslc

Set HTTP header for OSLC client

Syntax
setHttpHeader(myClient,header)

Description
setHttpHeader(myClient,header) assigns the custom HTTP header header to the OSLC client
myClient. The custom header allows for HTTP methods. For more information, see
matlab.net.http.HeaderField methods.

Examples

Set Custom HTTP Header

This example shows how to set a custom HTTP header for a configured OSLC client.

Create a custom HTTP header by using the matlab.net.http.HeaderField class constructor.

header = matlab.net.http.HeaderField('Content-Type','text/plain')

header =

 HeaderField with properties:

 Name: "Content-Type"
 Value: "text/plain"

After you have created and configured an OSLC client as described in “Create and Configure an
OSLC Client for the Requirements Management Domain” on page 2-3, assign the header to the
OSLC client myClient.

setHttpHeader(myClient,header);

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

header — Custom HTTP header
matlab.net.http.HeaderField object

Custom HTTP header, specified as a matlab.net.http.HeaderField object.

 setHttpHeader

1-295

Tips
• If your OSLC service provider requires a cookie for repeated requests, you can include an

authenticated cookie in your matlab.net.http.HeaderField object by using
matlab.net.http.field.CookieField.

Version History
Introduced in R2021a

See Also
matlab.net.http.HeaderField | oslc.Client | setHttpOptions

1 Functions

1-296

setHttpOptions
Package: oslc

Set HTTP options for OSLC client

Syntax
setHttpOptions(myClient,opts)

Description
setHttpOptions(myClient,opts) assigns the custom HTTP options opts to the OSLC client
myClient.

Examples

Authenticate a Client that Requires Custom HTTP Options

This example shows how to authenticate an OSLC client by using custom HTTP options.

Create the OSLC client.

myClient = oslc.Client;

Set the server URL, service root and catalog path for your service provider.

setServer(myClient,'http://example.com');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'oslc/services/catalog');

Create and enter the user credentials by using the matlab.net.http.Credentials class with a
basic matlab.net.http.AuthenticationScheme object.

creds = matlab.net.http.Credentials('Username','jdoe','Password', ...
'Password1234','scheme',matlab.net.http.AuthenticationScheme.Basic);

Create custom HTTP options by using the matlab.net.http.HTTPOptions class constructor. Set
the Credentials property for the custom HTTP options.

opts = matlab.net.http.HTTPOptions('Credentials',creds)

opts =

 HTTPOptions with properties:

 MaxRedirects: 20
 ConnectTimeout: 10
 UseProxy: 1
 ProxyURI: []
 Authenticate: 1
 Credentials: [1×1 matlab.net.http.Credentials]

 setHttpOptions

1-297

 UseProgressMonitor: 0
 SavePayload: 0
 ConvertResponse: 1
 DecodeResponse: 1
 ProgressMonitorFcn: []
 CertificateFilename: "default"
 VerifyServerName: 1
 DataTimeout: Inf
 ResponseTimeout: Inf
 KeepAliveTimeout: Inf

Specify the custom HTTP options to authenticate the OSLC client myClient.

setHttpOptions(myClient,opts);

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

opts — Custom HTTP options
matlab.net.http.HTTPOptions object

Custom HTTP header, specified as a matlab.net.http.HTTPOptions object.

Tips
• You can use a matlab.net.http.HTTPOptions object for custom authentication for an

oslc.Client object. For more information, see “Server Authentication”.

Version History
Introduced in R2021a

See Also
matlab.net.http.HTTPOptions | oslc.Client | setHttpHeader

Topics
“Use HTTP with MATLAB”

1 Functions

1-298

setProperty
Package: oslc.rm

Set local contents of text property for OSLC resource object

Syntax
setProperty(resource,propertyName,textContents)

Description
setProperty(resource,propertyName,textContents) sets the text contents of the RDF/XML
element propertyName to the value specified by textContents in the locally stored RDF/XML data
for the Open Services for Lifecycle Collaboration (OSLC) resource specified by resource. Use the
commit function to apply the change to the service provider. For more information about RDF/XML
elements, see An XML Syntax for RDF on the World Wide Web Consortium website.

Examples

Add, Get, and Remove Properties from OSLC Resources

This example shows how to add, get, and remove properties from an existing OSLC requirement
resource.

Create and configure the OSLC client myClient as described in “Create and Configure an OSLC
Client for the Requirements Management Domain” on page 2-3. Then query the service provider
for requirements and assign an oslc.rm.Requirement object to the variable myReq as described in
“Submit a Query Request with Query Capability” on page 1-209.

Retrieve the full resource data from the service provider for the requirement resource myReq.

status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

The requirement myReq has a linked requirement with an implementedBy relationship. Get the
rdf:resource value for the oslc_rm:implementedBy property for the requirement resource
myReq.

linkedReq = getResourceProperty(myReq,'oslc_rm:implementedBy')

linkedReq =

 1×1 cell array

 {'https://localhost:9443/rm/resources/_72lxMWJREeup0...'}

 setProperty

1-299

https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax

Change the relationship between the linked requirement and myReq from implementedBy to
decomposedBy. Remove the oslc_rm:implementedBy property and add an
oslc_rm:decomposedBy property.

removeResourceProperty(myReq,'oslc_rm:implementedBy',linkedReq)
addResourceProperty(myReq,'oslc_rm:decomposedBy',linkedReq)

Get the text contents for the dcterms:title property.

title = getProperty(myReq,'dcterms:title')

title =

 'My New Requirement'

Change the title to My New Requirement (Edited). Confirm the changes.

setProperty(myReq,'dcterms:title','My New Requirement (Edited)')
title = getProperty(myReq,'dcterms:title')

title =

 'My New Requirement (Edited)'

Add a new text property to the requirement with the tag dcterms:description. Confirm the
changes.

addTextProperty(myReq,'dcterms:description', ...
 'My new requirement edited using the MATLAB OSLC client.');
desc = getProperty(myReq,'dcterms:description')

desc =

 'My new requirement created using the MATLAB OSLC client.'

Commit the changes to the service provider.

status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

View the resource that you edited in the system browser.

show(myReq)

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

1 Functions

1-300

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

propertyName — OSLC resource property name
character vector

OSLC resource property name, specified as a character vector.

textContents — OSLC resource text contents
character vector

OSLC resource text content, specified as a character vector.

Tips
• For information about OSLC resource properties, see these pages on the OSLC website:

• RM Resource Definitions
• QM Resource Definitions
• CM Resource Definitions

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | addTextProperty |
getProperty

External Websites
RDF 1.1 XML Syntax

 setProperty

1-301

https://archive.open-services.net/bin/view/Main/RmSpecificationV2.html#RM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#QM_Resource_Definitions
https://archive.open-services.net/bin/view/Main/CmSpecificationV2.html#CM_Resource_Definitions
https://www.w3.org/TR/rdf-syntax-grammar/

setQueryParameter
Package: oslc.core

Set query parameter for OSLC query service

Syntax
setQueryParameter(myQueryCapability,parameter)

Description
setQueryParameter(myQueryCapability,parameter) sets a query parameter for the query
capability myQueryCapability.

Note The query parameter is only applied for one query. After you submit a query, the query
parameter is automatically cleared from the query capability.

Examples

Set a Query Parameter for a Query Capability

This example shows how to set a query parameter for a query capability.

After you have created and configured an OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type.

myQueryCapability = getQueryService(myClient,'Requirement')

myQueryCapability =

 QueryCapability with properties:

 queryParameter: ''
 client: [1×1 oslc.Client]
 queryBase: 'https://localhost:9443/rm/views?oslc.query=true&projectURL=http...'
 resourceShape: {0×1 cell}
 dom: [1×1 matlab.io.xml.dom.Element]
 title: 'Query Capability'
 resourceType: {1×2 cell}

Set a query parameter for the query capability. Inspect the query capability queryParameter
property.

setQueryParameter(myQueryCapability,'?oslc.select=oslc_rm:requirement');
param = myQueryCapability.queryParameter

1 Functions

1-302

param =

 '?oslc.select=oslc_rm:requirement'

Input Arguments
myQueryCapability — Resource query capability
oslc.core.QueryCapability object

OSLC resource query capability, specified as an oslc.core.QueryCapability object.

parameter — Query condition search parameter
character vector

OSLC query condition search parameter, specified as a character vector.

For more information, see Query Parameters on the OSLC website.

Tips
• For information about query syntaxes, see Open Services for Lifecycle Collaboration Core
Specification Version 2.0 Query Syntax on the OSLC website.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.QueryCapability

External Websites
OSLC Query Parameters

 setQueryParameter

1-303

https://archive.open-services.net/bin/view/Main/OSLCCoreSpecQuery#Query_Parameters
https://archive.open-services.net/bin/view/Main/OSLCCoreSpecQuery.html
https://archive.open-services.net/bin/view/Main/OSLCCoreSpecQuery.html
https://archive.open-services.net/bin/view/Main/OSLCCoreSpecQuery#Query_Parameters

setRDF
Package: oslc.rm

Set RDF content for local OSLC resource object

Syntax
setRDF(resource,rdfContent)

Description
setRDF(resource,rdfContent) sets the XML/RDF data to the content specified by rdfContent
for the resource specified by resource. Use the commit function to apply the change to the service
provider. For more information, see RDF classes and properties in OSLC on the Open Services for
Lifecycle Collaboration (OSLC) website.

Examples

Get and Set RDF Content for Requirement Resource

This example shows how to get and set the RDF content of an OSLC requirement resource with a
configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type.

myQueryCapability = getQueryService(myClient);

Submit a query request to the service provider for the available requirement resources.

reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Fetch the full resource properties for a single requirement resource. Inspect the title of the
requirement.

myReq = reqs(1);
status = fetch(myReq,myClient)

status =

1 Functions

1-304

https://open-services.net/resources/oslc-primer/#rdf-classes-and-properties-in-oslc

 StatusCode enumeration

 OK

title = myReq.Title

title =

 'My New Requirement'

Get the locally stored RDF content of the requirement resource.

rdfContent = getRDF(myReq)

rdfContent =

 '<?xml version="1.0" encoding="UTF-8" standalone="no" ?><rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:oslc_rm="http://open-services.net/ns/rm#">
 <oslc_rm:Requirement>
 <dcterms:title>My New
Requirement</dcterms:title><oslc:instanceShape
rdf:resource="https://example.com/shapes/oslc-requirement-version1"/>
</oslc_rm:Requirement>
 </rdf:RDF>'

Copy and paste the rdfContent text into a new variable newRDF. Edit the text contents for the
dcterms:title property to My New Requirement (Edited).

newRDF = ['<?xml version="1.0" encoding="UTF-8" ' ...
'standalone="no" ?><rdf:RDF ' ...
'xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" ' ...
'xmlns:dcterms="http://purl.org/dc/terms/" ' ...
'xmlns:oslc="http://open-services.net/ns/core#" ' ...
'xmlns:oslc_rm="http://open-services.net/ns/rm#">' ...
'<oslc_rm:Requirement><dcterms:title>' ...
'My New Requirement (Edited)</dcterms:title>' ...
'<oslc:instanceShape rdf:resource=' ...
'"https://example.com/shapes/oslc-requirement-version1"/>' ...
'</oslc_rm:Requirement></rdf:RDF>']

Set the RDF content of the requirement to the variable newRDF. Inspect the requirement title.

setRDF(myReq,newRDF);
title = myReq.Title

title =

 'My New Requirement (Edited)'

Commit the changes to the service provider.

status = commit(newReq,myClient)

status =

 StatusCode enumeration

 setRDF

1-305

 OK

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

rdfContent — RDF resource data
character vector

RDF data for OSLC resource, specified as a character vector.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | getRDF

External Websites
RDF 1.1 XML Syntax

1 Functions

1-306

https://www.w3.org/TR/rdf-syntax-grammar/

setResourceUrl
Package: oslc.rm

Set resource URL for local OSLC resource object

Syntax
setResourceUrl(resource,URL)

Description
setResourceUrl(resource,URL) sets the ResourceUrl property of the resource specified by
resource to the existing resource URL specified by URL.

Examples

Set OSLC Requirement Resource URL

This example shows how to associate an Open Services for Lifecycle Collaboration (OSLC)
requirement resource object in MATLAB with an existing OSLC requirement resource in the service
provider.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a new
requirement resource by creating an instance of the oslc.rm.Requirement class.

myReq = oslc.rm.Requirement

myReq =
 Requirement with properties:

 ResourceUrl: ''
 Dirty: 0
 IsFetched: 0
 Title: ''
 Identifier: ''

In the OSLC service provider, locate the requirement resource that you want to associate with the
object in MATLAB. Identify the resource URL, then create a variable URL and set the value of the
variable to the resource URL.

URL = 'https://localhost:9443/rm/resources/_oJNtgWrqEeup0a6t';

Set the resource URL for the requirement object myReq. Inspect the requirement.

setResourceUrl(myReq,URL);
myReq

myReq =

 Requirement with properties:

 setResourceUrl

1-307

 ResourceUrl: 'https://localhost:9443/rm/resources/_oJNtgWrqEeup0a6t'
 Dirty: 1
 IsFetched: 0
 Title: ''
 Identifier: ''

Retrieve the full resource data from the service provider for the requirement resource and inspect
the resource.

fetch(myReq,myClient);
myReq

myReq =

 Requirement with properties:

 ResourceUrl: 'https://localhost:9443/rm/resources/_oJNtgWrqEeup0a6t'
 Dirty: 0
 IsFetched: 1
 Title: '[SAFe] Lightweight Business Case Template'
 Identifier: '1172'

Open the requirement resource in the system browser.

show(newReq)

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

URL — Existing resource URL
character vector

Existing resource URL, specified as a character vector.

Tips
• Use this function when you have the resource URL for an OSLC resource and want to access the

properties or links of the resource in MATLAB.

1 Functions

1-308

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | show | fetch

 setResourceUrl

1-309

setServer
Package: oslc

Set server URL for OSLC client

Syntax
setServer(myClient,serverURL)

Description
setServer(myClient,serverURL) sets the OSLC client myClient to the server URL specified by
serverURL.

Examples

Create and Configure an OSLC Client for the Requirements Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the requirements management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Then set the service root and catalog path for
the requirements management domain and the configuration query path.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'/oslc_rm/catalog');
setConfigurationQueryPath(myClient,'gc/oslc-query/configurations');
myClient

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

providers =

 4×1 cell array

 {'OSLC Plugin' }
 {'Model Based Design with OSLC' }
 {'OSLC4RM' }
 {'Interactive Testing (Requirements Management)'}

1 Functions

1-310

setServiceProvider(myClient,'OSLC Plugin');

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/rm/oslc_rm/catalog'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

serverURL — OSLC server URL
character vector

OSLC server URL to set the OSLC client to, specified as a character vector.

Version History
Introduced in R2021a

See Also
oslc.Client | setCatalogPath | setServiceRoot | login | setUser

 setServer

1-311

setServiceProvider
Package: oslc

Set service provider for OSLC client

Syntax
setServiceProvider(myClient,providerName)

Description
setServiceProvider(myClient,providerName) sets the OSLC client myClient to the service
provider specified by providerName.

Examples

Create and Configure an OSLC Client for the Requirements Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the requirements management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Then set the service root and catalog path for
the requirements management domain and the configuration query path.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'/oslc_rm/catalog');
setConfigurationQueryPath(myClient,'gc/oslc-query/configurations');
myClient

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

providers =

 4×1 cell array

 {'OSLC Plugin' }
 {'Model Based Design with OSLC' }
 {'OSLC4RM' }
 {'Interactive Testing (Requirements Management)'}

1 Functions

1-312

setServiceProvider(myClient,'OSLC Plugin');

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/rm/oslc_rm/catalog'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

providerName — OSLC service provider name
character vector

OSLC service provider name to set the client to, specified as a character array.

Version History
Introduced in R2021a

See Also
oslc.Client | getConfigurationContextNames | setConfigurationContext | login |
getServiceProviderNames | setConfigurationQueryPath

 setServiceProvider

1-313

setServiceRoot
Package: oslc

Set service root for OSLC client

Syntax
setServiceRoot(myClient,root)

Description
setServiceRoot(myClient,root) sets the OSLC client myClient to the service root specified by
root.

Examples

Create and Configure an OSLC Client for the Requirements Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the requirements management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Then set the service root and catalog path for
the requirements management domain and the configuration query path.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'/oslc_rm/catalog');
setConfigurationQueryPath(myClient,'gc/oslc-query/configurations');
myClient

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

providers =

 4×1 cell array

 {'OSLC Plugin' }
 {'Model Based Design with OSLC' }
 {'OSLC4RM' }
 {'Interactive Testing (Requirements Management)'}

1 Functions

1-314

setServiceProvider(myClient,'OSLC Plugin');

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/rm/oslc_rm/catalog'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

root — OSLC service root
character vector

OSLC service root, specified as a character vector.

Version History
Introduced in R2021a

See Also
oslc.Client | setCatalogPath | setServer | login | setUser

 setServiceRoot

1-315

setUser
Package: oslc

Set user for OSLC client

Syntax
setUser(myClient,userName)

Description
setUser(myClient,userName) sets the OSLC client myClient to the user specified by userName.

Examples

Create and Configure an OSLC Client for the Requirements Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the requirements management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Then set the service root and catalog path for
the requirements management domain and the configuration query path.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'/oslc_rm/catalog');
setConfigurationQueryPath(myClient,'gc/oslc-query/configurations');
myClient

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

providers =

 4×1 cell array

 {'OSLC Plugin' }
 {'Model Based Design with OSLC' }
 {'OSLC4RM' }
 {'Interactive Testing (Requirements Management)'}

1 Functions

1-316

setServiceProvider(myClient,'OSLC Plugin');

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/rm/oslc_rm/catalog'

Input Arguments
myClient — OSLC client
oslc.Client object

OSLC client, specified as an oslc.Client object.

userName — OSLC user name
character vector

OSLC user name, specified as a character vector.

Version History
Introduced in R2021a

See Also
oslc.Client | setCatalogPath | setServer | setServiceRoot | login

 setUser

1-317

show
Package: oslc.rm

View OSLC resource in system browser

Syntax
show(resource)

Description
show(resource) opens the ResourceUrl associated with resource in the system browser.

Examples

Create a New Requirement

This example shows how to submit a creation request for a new requirement resource with a
configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a
creation factory for the requirement resource type.

myCreationFactory = getCreationFactory(myClient,'Requirement');

Use the creation factory to create a new requirement resource with the title My New Requirement.
Retrieve the full resource data from the service provider for the requirement resource and inspect
the resource.

newReq = createRequirement(myCreationFactory,'My New Requirement');
fetch(newReq,myClient);
newReq

newReq =

 Requirement with properties:

 ResourceUrl: 'https://localhost:9443/rm/resources/_72lxMWJREeup0...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Requirement'
 Identifier: '1806'

Open the requirement resource in the system browser by using the show function.

1 Functions

1-318

show(newReq)

Input Arguments
resource — OSLC resource object
oslc.rm.Requirement object | oslc.rm.RequirementCollection object |
oslc.cm.ChangeRequest object | ...

OSLC resource object, specified as one of these objects:

• oslc.cm.ChangeRequest
• oslc.qm.TestCase
• oslc.qm.TestExecutionRecord
• oslc.qm.TestPlan
• oslc.qm.TestResult
• oslc.qm.TestScript
• oslc.rm.Requirement
• oslc.rm.RequirementCollection

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.rm.RequirementCollection |
oslc.cm.ChangeRequest | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript | fetch | commit | remove

 show

1-319

showAssumptionColumn
Package: slreq.modeling

Show Precondition column in Assumptions tab

Syntax
showAssumptionColumn(reqTable)

Description
showAssumptionColumn(reqTable) shows the Precondition column in the Assumptions tab of
the Requirements Table block, reqTable.

Examples

Show the Precondition Column in a Requirements Table Block

Find the Requirements Table block in a model by using slreq.modeling.find.

reqTable = slreq.modeling.find("myModel");

Show the Precondition column in the Assumptions tab.

showAssumptionColumn(reqTable);

Input Arguments
reqTable — Requirements Table block
RequirementsTable object

Requirements Table block, specified as a RequirementsTable object.

Version History
Introduced in R2022a

See Also
Objects
RequirementsTable

Functions
hideAssumptionColumn | showRequirementColumn | hideRequirementColumn

1 Functions

1-320

showRequirementColumn
Package: slreq.modeling

Show columns in Requirements tab

Syntax
showRequirementColumn(reqTable,column)

Description
showRequirementColumn(reqTable,column) shows the column type specified by column in the
Requirements tab of the Requirements Table block, reqTable.

Examples

Show the Postcondition Columns in a Requirements Table Block

Find the Requirements Table block in a model by using slreq.modeling.find.

reqTable = slreq.modeling.find("myModel");

Show the Postcondition columns in the Requirements tab.

showRequirementColumn(reqTable,"Postconditions");

Input Arguments
reqTable — Requirements Table block
RequirementsTable object

Requirements Table block, specified as a RequirementsTable object.

column — Column type
"Duration" | "Actions" | "Postconditions"

Column type to be shown, specified as "Duration", "Actions", or "Postconditions". Use this
argument to show the Duration, Action, or Postcondition columns, respectively.
Data Types: enumerated

Version History
Introduced in R2022a

See Also
Objects
RequirementsTable

 showRequirementColumn

1-321

Functions
hideRequirementColumn | showAssumptionColumn | hideAssumptionColumn

1 Functions

1-322

slwebview_req
Export Simulink system to Web views with requirements

Syntax
filename = slwebview_req(sysname)
filename = slwebview_req(sysname,Name,Value)

Description
filename = slwebview_req(sysname) exports the system sysname and its children to a web
page filename with contextual requirements information for the system displayed on a separate
panel of the layered model structure Web view.

filename = slwebview_req(sysname,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Note You can use slwebview_req only if you have also installed Simulink Report Generator™.

Examples

Export All Layers

Export all the layers (including libraries and masks) from the system gcs to the file filename

filename = slwebview_req(gcs, 'LookUnderMasks', 'all', 'FollowLinks', 'on')

Input Arguments
sysname — The system to export to a Web view file
character vector containing the path to the system | handle to a subsystem or block diagram | handle
to a chart or subchart

Exports the specified system or subsystem and its child systems to a Web view file, with contextual
requirements information for the system displayed on a separate panel of the layered model structure
Web view. By default, child systems of the sysname system are also exported. Use the SearchScope
name-value pair to export other systems, in relation to sysname.
Example: ‘sysname’

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

 slwebview_req

1-323

Example: 'ShowProgressBar','off'

SearchScope — Systems to export, relative to the sysname system
'CurrentAndBelow' (default) | 'Current' | 'CurrentAndAbove' | 'All'

'CurrentAndBelow' exports the Simulink system or the Stateflow chart specified by sysname and
all systems or charts that it contains.

'Current' exports only the Simulink system or the Stateflow chart specified by sysname.

'CurrentAndAbove' exports the Simulink system or the Stateflow chart specified by the sysname
and all systems or charts that contain it.

'All' exports all Simulink systems or Stateflow charts in the model that contains the system or chart
specified by sysname.
Data Types: char

LookUnderMasks — Specifies whether to export the ability to interact with masked blocks
'none' (default) | 'all'

'none' does not export masked blocks in the Web view. Masked blocks are included in the exported
systems, but you cannot access the contents of the masked blocks.

'all' exports all masked blocks.
Data Types: char

FollowLinks — Specifies whether to follow links into library blocks
'off' (default) | 'on'

'off' does not allow you to follow links into library blocks in a Web view.

'on' allows you to follow links into library blocks in a Web view.
Data Types: char

FollowModelReference — Specifies whether to access referenced models in a Web view
'off' (default) | 'on'

'off' does not allow you to access referenced models in a Web view.

'on' allows you to access referenced models in a Web view.
Data Types: char

ViewFile — Specifies whether to display the Web view in a Web browser when you export
the Web view
'on' (default) | 'off'

'on' displays the Web view in a Web browser when you export the Web view.

'off' does not display the Web view in a Web browser when you export the Web view.
Data Types: char

1 Functions

1-324

ShowProgressBar — Specifies whether to display the status bar when you export a Web
view
'on' (default) | 'off'

'on' displays the status bar when you export a Web view.

'off' does not display the status bar when you export a Web view.
Data Types: char

Output Arguments
filename — The name of the HTML file for displaying the Web view
character vector

Reports the name of the HTML file for displaying the Web view. Exporting a Web view creates the
supporting files, in a folder.

Tips
A Web view is an interactive rendition of a model that you can view in a Web browser. You can
navigate a Web view hierarchically to examine specific subsystems and to see properties of blocks
and signals.

You can use Web views to share models with people who do not have Simulink installed.

Web views require a Web browser that supports Scalable Vector Graphics (SVG).

Version History
Introduced in R2015a

See Also
slwebview_cov

 slwebview_req

1-325

slreq.show
Navigate to link source or destination

Syntax
slreq.show(tgt)

Description
slreq.show(tgt) navigates to tgt, a link source or destination. The source or destination object
opens in the corresponding interface, such as a block in a model, or test in the Test Manager.

Examples

Show Link Source

This example shows how to navigate to a link source.

Load Requirement Set and Links

rq = slreq.load('original_thrust_reverser_requirements.slreqx');
lk = slreq.load('reqs_validation_property_proving_original_model.slmx');

Navigate to a Link Source

sl = getLinks(lk);
sl2 = sl(2);
slreq.show(source(sl2))

1 Functions

1-326

Cleanup

Cleanup commands. Clears open requirement sets without saving changes, and closes open models
without saving changes.

slreq.clear;
bdclose all

Input Arguments
tgt — Link source or destination
struct

Link source or destination, as may be returned by source or destination for a Link.
Example: struct with fields
Data Types: struct

Version History
Introduced in R2020a

See Also
slreq.Link | slreq.inLinks | slreq.outLinks

 slreq.show

1-327

slreq.structToObj
Convert link source or destination information from structure to model object type

Syntax
ot = slreq.structToObj(linkinfo)

Description
ot = slreq.structToObj(linkinfo) converts the source or destination link information in the
structure linkinfo to the corresponding object type, ot. The object type returned can include
Simulink blocks, Simulink Test test cases, or other object types compatible with Requirements
Toolbox.

Examples

Convert Link Source and Destination to Model Entity

This example shows how to get the structure containing unique requirement source and destination
information, then convert the structure information to the specific source and destination model
entity.

Load Model, Requirement Set, and Links

load_system('reqs_validation_property_proving_original_model');
reqset = slreq.load('original_thrust_reverser_requirements.slreqx');
linkset = slreq.load('reqs_validation_property_proving_original_model.slmx');

For a Link Set

Get sources from a link set, get a single source, and convert the structure to the model entity.

linkSources = sources(linkset);
linkSource1 = linkSources(1);
modelSource1 = slreq.structToObj(linkSource1);

For a Link

Get a link from the link set, get the source and destination for that link.

links = getLinks(linkset);
link2 = links(2);
linkSource2 = source(link2);
linkDest2 = destination(link2);

Convert the source and destination structure to the model entity.

modelSource2 = slreq.structToObj(linkSource2);
modelDest2 = slreq.structToObj(linkDest2);

1 Functions

1-328

Clear Example Files

Cleanup commands -- close the open model, and clear and close the open requirement and link set.

slreq.clear;
close_system('reqs_validation_property_proving_original_model',0)

Input Arguments
linkinfo — Link information from a slreq.Link or slreq.LinkSet
struct

linkinfo contains source artifact and unique identification information for particular links, as
returned by

• sources for a slreq.LinkSet.
• source or destination for a slreq.Link.

Example: struct with fields
Data Types: struct

Output Arguments
ot — Source or destination object
Requirement, model, or data entity

ot is the requirement, model, or data entity corresponding to the source artifact and unique
identification in linkinfo. The value of ot depends on the type of entity the Link has as source or
destination.

Version History
Introduced in R2018a

See Also
slreq.LinkSet | slreq.Link

Topics
“Use Command-Line API to Update or Repair Requirements Links”

 slreq.structToObj

1-329

view
Package: oslc.core

View OSLC dialog in system browser

Syntax
view(myDialog)

Description
view(myDialog) opens the Open Services for Lifecycle Collaboration dialog myDialog in the
system browser.

Examples

Get and View OSLC User Interface Dialogs

This example shows how to get and view an OSLC user interface dialog for a configured OSLC client.

After you have created and configured an OSLC client as described in “Create and Configure an
OSLC Client for the Requirements Management Domain” on page 2-3, get the available user
interface dialogs in the requirements management domain of the client myClient.

dialogs = getDialog(myClient)

dialogs =

 1×4 Dialog array with properties:

 dialog
 hintWidth
 hintHeight
 title
 resourceType

Examine the properties of one of the dialogs. From the title, determine the resource type and if the
dialog is for creating or selecting resources.

myDialog = dialogs(1);
title = myDialog.title

title =

 'Requirement Creation'

Open the dialog in a browser.

1 Functions

1-330

view(myDialog)

Input Arguments
myDialog — OSLC user interface dialog
oslc.core.Dialog object

OSLC user interface dialog, specified as an oslc.core.Dialog object.

Version History
Introduced in R2021a

See Also
oslc.core.Dialog | oslc.Client | getDialog

 view

1-331

Classes

2

oslc.Client
Client to integrate with OSLC providers

Description
Use an oslc.Client object to integrate with an Open Services for Lifecycle Collaboration (OSLC)
service provider. Specify the service provider properties on the object, then use the object functions
to set your user name and log in to the server. You can then use oslc.core.CreationFactory and
oslc.core.QueryCapability objects to create and query resources in the OSLC service provider.

Creation

Syntax
myClient = oslc.Client

Description

myClient = oslc.Client returns an OSLC client object.

Properties
ServiceProvider — OSLC service provider name
character array

OSLC service provider name, specified as a character array.

ConfigurationContext — Service provider configuration context name
character array

Service provider configuration context name, specified as a character array.

CatalogUrl — Service provider catalog URL
character array

Service provider catalog URL, specified as a character array.
Example: 'https://localhost:9443/qm/oslc_qm/catalog'

Object Functions
getConfigurationContextNames Get configuration context names from OSLC service provider
getCreationFactory Get OSLC creation service object
getCustomLoginProvider Get registered custom authentication callback function name for

OSLC client
getDialog Get user interface dialogs from OSLC service provider
getQueryService Get OSLC query service object
getServer Get server URL for OSLC client

2 Classes

2-2

getServiceProviderNames Get service providers for OSLC client
getUser Get user for OSLC client
login Log in to OSLC client
remove Remove resource from OSLC service provider
setCatalogPath Set catalog path for OSLC client
setConfigurationContext Set configuration context for OSLC client
setConfigurationQueryPath Set configuration query path for OSLC client
setCustomLoginProvider Register custom authentication callback function to OSLC client
setHttpHeader Set HTTP header for OSLC client
setHttpOptions Set HTTP options for OSLC client
setServer Set server URL for OSLC client
setServiceProvider Set service provider for OSLC client
setServiceRoot Set service root for OSLC client
setUser Set user for OSLC client

Examples

Create and Configure an OSLC Client for the Requirements Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the requirements management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Then set the service root and catalog path for
the requirements management domain and the configuration query path.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'rm');
setCatalogPath(myClient,'/oslc_rm/catalog');
setConfigurationQueryPath(myClient,'gc/oslc-query/configurations');
myClient

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

providers =

 4×1 cell array

 {'OSLC Plugin' }
 {'Model Based Design with OSLC' }
 {'OSLC4RM' }
 {'Interactive Testing (Requirements Management)'}

setServiceProvider(myClient,'OSLC Plugin');

 oslc.Client

2-3

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/rm/oslc_rm/catalog'

Create and Configure an OSLC Client for the Quality Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the quality management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Set the service root and catalog path for the
quality management domain.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'qm');
setCatalogPath(myClient,'/oslc_qm/catalog');

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

providers =

 4×1 cell array

 {'OSLC Plugin (Quality Management)' }

2 Classes

2-4

 {'Model Based Design with OSLC (Quality Management)'}
 {'OSLC4RM (Quality Management)' }
 {'Interactive Testing (Quality Management)' }

setServiceProvider(myClient,'OSLC Plugin (Quality Management)');

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin (Quality Management)'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/qm/oslc_qm/catalog'

Create and Configure an OSLC Client for the Change Management Domain

This example shows how to create an OSLC client in MATLAB and configure the client to connect to
an OSLC service provider for the change management domain.

Create the OSLC client.

myClient = oslc.Client;

Set the user and server URL for your service provider. Set the service root and catalog path for the
change management domain.

setUser(myClient,'jdoe');
setServer(myClient,'https://localhost:9443');
setServiceRoot(myClient,'ccm');
setCatalogPath(myClient,'/oslc/workitems/catalog');

Log in to the client and enter your credentials when prompted.

login(myClient);

Get the available service providers in the specified catalog path and service root. Set the OSLC client
to the desired service provider.

providers = getServiceProviderNames(myClient)

 oslc.Client

2-5

providers =

 4×1 cell array

 {'OSLC Plugin (Change Management)' }
 {'Model Based Design with OSLC (Change Management)'}
 {'OSLC4RM (Change Management)' }
 {'Interactive Testing (Change Management)' }

setServiceProvider(myClient,'OSLC Plugin (Change Management)');

If applicable, get the available configuration contexts. Set the OSLC client to the desired
configuration context.

configurations = getConfigurationContextNames(myClient)

configurations =

 2×1 cell array

 {'Initial Development'}
 {'Initial Baseline' }

setConfigurationContext(myClient,'Initial Development');

Inspect the client properties.

myClient

myClient =

 Client with properties:

 ServiceProvider: 'OSLC Plugin (Change Management)'
 ConfigurationContext: 'Initial Development'
 CatalogUrl: 'https://localhost:9443/cm/oslc_cm/catalog'

Version History
Introduced in R2021a

See Also
oslc.core.CreationFactory | oslc.core.QueryCapability | oslc.core.Dialog |
oslc.rm.Requirement | oslc.qm.TestCase | oslc.cm.ChangeRequest

External Websites
Open Services for Lifecycle Collaboration

2 Classes

2-6

https://open-services.net/

oslc.cm.ChangeRequest
Change request resource for OSLC change management domain

Description
The oslc.cm.ChangeRequest object represents change request resources in the change
management domain of the Open Services for Lifecycle Collaboration (OSLC) service provider. After
creating and configuring oslc.Client and oslc.core.QueryCapability objects, query the
service provider for available change request resources by using the queryChangeRequests
function.

Creation
Create an oslc.cm.ChangeRequest object by using the createChangeRequest function.

Properties
ResourceUrl — Resource navigation URL
character array

Navigation URL for the change request resource, specified as a character array.

Dirty — Uncommitted changes indicator
0 | 1

Indicator for uncommitted changes to the change request resource, specified as a logical 1or 0
where:

• 1 indicates the change request resource has uncommitted changes.
• 0 indicates the change request resource has no uncommitted changes.

Data Types: logical

IsFetched — Resource fetch status
0 | 1

Change request resource fetch status, specified as a logical 1 or 0 where:

• 1 indicates the change request resource is fetched.
• 0 indicates the change request resource is not fetched.

Data Types: logical

Title — Change request title
character array

Change request title, specified as a character array.

 oslc.cm.ChangeRequest

2-7

Identifier — Change request resource identifier
character array

OSLC change request resource identifier, specified as a character array.

Object Functions
addResourceProperty Add resource property to local OSLC resource object
addTextProperty Add text property to local OSLC resource object
commit Send local changes to OSLC service provider
fetch Retrieve full resource data from OSLC service provider
getProperty Get local contents of text property from OSLC resource object
getRDF Get resource RDF/XML data from OSLC resource object
getResourceProperty Get local contents of resource property from OSLC resource object
remove Remove resource from OSLC service provider
removeResourceProperty Remove resource property from local OSLC resource object
setProperty Set local contents of text property for OSLC resource object
setRDF Set RDF content for local OSLC resource object
setResourceUrl Set resource URL for local OSLC resource object
show View OSLC resource in system browser

Examples

Edit a Change Request and Commit Changes

This example shows how to submit a query request for change request resources with a configured
OSLC client, edit an existing change request resource, and commit the changes to the service
provider.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Change Management Domain” on page 2-5, create a query
capability for the change request resource type.

myQueryCapability = getQueryService(myClient,'ChangeRequest');

Submit a query request to the service provider for the available change request resources.

changeRequests = queryChangeRequests(myQueryCapability)

changeRequests =

 1×6 ChangeRequest array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign a change request resource to the variable myCR. Retrieve the full resource data from the
service provider for the change request resource. Examine the Title property.

myCR = changeRequests(1);
status = fetch(myCR,myClient)

2 Classes

2-8

status =

 StatusCode enumeration

 OK

title = myCR.Title

title =

 'Change Request 1'

Edit the change request title and commit the change to the service provider.

myCR.Title = 'My New Change Request Title';
status = commit(myCR,myClient)

status =

 StatusCode enumeration

 OK

Open the change request resource in the system browser by using the show function.

show(myChangeRequest)

Create a New Change Request

This example shows how to submit a creation request for a new change request resource with a
configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Change Management Domain” on page 2-5, create a creation
factory for the change request resource type.

myCreationFactory = getCreationFactory(myClient,'ChangeRequest');

Use the creation factory to create a new change request resource with the title My New Change
Request. Retrieve the full resource data from the service provider for the change request resource
and inspect the resource.

newCR = createChangeRequest(myCreationFactory,'My New Change Request');
fetch(newCR,myClient);
newCR

newCR =

 ChangeRequest with properties:

 ResourceUrl: 'https://localhost:9443/ccm/resource/itemName/...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Change Request'
 Identifier: '204'

Open the change request resource in the system browser by using the show function.

 oslc.cm.ChangeRequest

2-9

show(newCR)

Version History
Introduced in R2021a

See Also
oslc.core.CreationFactory | oslc.core.QueryCapability | oslc.Client |
oslc.qm.TestCase | oslc.rm.Requirement | queryChangeRequests | createChangeRequest

External Websites
Open Services for Lifecycle Collaboration
Resource ChangeRequest

2 Classes

2-10

https://open-services.net/
https://archive.open-services.net/bin/view/Main/CmSpecificationV2.html#Resource_ChangeRequest

oslc.core.CreationFactory
OSLC service provider creation factory

Description
Use oslc.core.CreationFactory object functions to create resources in an Open Services for
Lifecycle Collaboration (OSLC) service provider. After creating and configuring an oslc.Client, you
can create a creation factory object for the service provider specified in the client object.

Creation
Create an oslc.core.CreationFactory object by using getCreationFactory.

Properties
client — Associated OSLC Client
oslc.Client object

OSLC client associated with the creation factory, specified as an oslc.Client object.

creation — Creation factory resource URI
character vector

Creation factory resource URI, specified as a character vector.

resourceShape — Resource URI for RDF representation of specified resource type
cell array

Resource URI for the RDF representation of the expected contents of the specified resource type,
specified as a cell array.
Example: {'https://localhost:9443/rm/types/_4zFVsRL5EeuLWbFL3e4vrw'}

title — Creation factory object title
character array

Creation factory object title, returned as a character array.

resourceType — Resource type to create
cell array

Resource type to create in the OSLC service provider, specified as a cell array.

Object Functions
create Create resource in OSLC service provider
createChangeRequest Create change request in OSLC service provider
createRequirement Create requirement in OSLC service provider

 oslc.core.CreationFactory

2-11

createRequirementCollection Create requirement collection in OSLC service provider
createTestCase Create test case in OSLC service provider
createTestExecutionRecord Create test execution record in OSLC service provider
createTestPlan Create test plan in OSLC service provider
createTestResult Create test result in OSLC service provider
createTestScript Create test script in OSLC service provider

Examples

Create All Available Creation Factories for an OSLC Client

This example shows how to create all available creation factories for a previously configured OSLC
client.

After you have created and configured an OSLC client as described in “Create and Configure an
OSLC Client for the Requirements Management Domain” on page 2-3, create all available creation
factories for the client myClient.

myCreationFactory = getCreationFactory(myClient)

myCreationFactory =

 1×8 CreationFactory array with properties:

 client
 creation
 resourceShape
 title
 resourceType

Examine the creation factory resourceType to determine which creation factory you want to use.

myCreationFactory(8).resourceType

ans =

 1×1 cell array

 {'http://open-services.net/ns/rm#Requirement'}

Submit a Creation Request by using a Creation Factory

This example shows how to submit a creation request by using a creation factory with a previously
configured OSLC client.

After you have created and configured an OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a creation
factory for the requirement resource type.

myCreationFactory = getCreationFactory(myClient,'Requirement')

myCreationFactory =

 CreationFactory with properties:

2 Classes

2-12

 client: [1×1 oslc.Client]
 creation: 'https://localhost:9443/rm/requirementFactory?projectURL=https%3A...'
 resourceShape: {1×22 cell}
 title: 'Requirement Creation Factory'
 resourceType: {'http://open-services.net/ns/rm#Requirement'}

Create a new requirement resource by using a creation factory and name the resource My New
Requirement. Fetch the full resource properties for the requirement resource. Then commit the
changes to the service provider.

newReq = createRequirement(myCreationFactory,'My New Requirement');
status = fetch(newReq,myClient)

status =

 StatusCode enumeration

 OK

status = commit(newReq,myClient)

status =

 StatusCode enumeration

 OK

View the resource that you created in the service provider.

show(newReq)

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.cm.ChangeRequest | oslc.qm.TestCase |
getCreationFactory

External Websites
Open Services for Lifecycle Collaboration
Creation Factories

 oslc.core.CreationFactory

2-13

https://open-services.net/
https://archive.open-services.net/bin/view/Main/OslcCoreSpecification.html#Creation_Factories

oslc.core.Dialog
OSLC service provider user interface dialog

Description
The oslc.core.Dialog objects represent user interface dialogs from an Open Services for Lifecycle
Collaboration (OSLC) service provider. After creating and configuring an oslc.Client object, query
the service provider for available user interface dialogs by using the getDialog object function.

Properties
dialog — Dialog URL
character array

User interface dialog URL, returned as a character array.

hintWidth — User interface width
character array

User interface width in pixels, specified as a character array.

hintHeight — User interface height
character array

User interface height in pixels, specified as a character array.

title — Dialog title
character array

User interface dialog title, returned as a character array.

resourceType — OSLC resource type
cell array

Resource type to select or create in user interface dialog, specified as a cell array.

Object Functions
view View OSLC dialog in system browser

Examples

Get and View OSLC User Interface Dialogs

This example shows how to get and view an OSLC user interface dialog for a configured OSLC client.

After you have created and configured an OSLC client as described in “Create and Configure an
OSLC Client for the Requirements Management Domain” on page 2-3, get the available user interface
dialogs in the requirements management domain of the client myClient.

2 Classes

2-14

dialogs = getDialog(myClient)

dialogs =

 1×4 Dialog array with properties:

 dialog
 hintWidth
 hintHeight
 title
 resourceType

Examine the properties of one of the dialogs. From the title, determine the resource type and if the
dialog is for creating or selecting resources.

myDialog = dialogs(1);
title = myDialog.title

title =

 'Requirement Creation'

Open the dialog in a browser.

view(myDialog)

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | oslc.core.QueryCapability | getDialog

External Websites
Open Services for Lifecycle Collaboration
Delegated User Interface Dialogs

 oslc.core.Dialog

2-15

https://open-services.net/
https://archive.open-services.net/bin/view/Main/OslcCoreSpecification.html#Delegated_User_Interface_Dialogs

oslc.core.QueryCapability
OSLC service provider query capability

Description
Use oslc.core.QueryCapability object functions to query resources in an Open Services for
Lifecycle Collaboration (OSLC) service provider. After creating and configuring an oslc.Client, you
can create a query capability object for the service provider specified in the Client object.

Creation
Create an oslc.core.QueryCapability object by using getQueryService.

Properties
queryParameter — Additional query capability parameters
character array

Additional query parameters defined in query capability object, specified as a character array.

For more information, see Query Parameters in the OSLC Core Specification Version 2.0 Query
Syntax.
Example: '?oslc.select=oslc_qm:testResult'

client — Associated OSLC Client
oslc.Client object

OSLC client associated with the query capability, specified as an oslc.Client object.

queryBase — Query capability resource URI
character vector

Query capability resource URI, specified as a character vector.

resourceShape — Resource URI for RDF representation of specified resource type
cell array

Resource URI for the RDF representation of the expected contents of the specified resource type,
specified as a cell array.
Example: {'https://localhost:9443/rm/types/_4zFVsRL5EeuLWbFL3e4vrw'}

title — Query capability object title
character array

Query capability object title, specified as a character array.

resourceType — Resource type to query
cell array

2 Classes

2-16

https://archive.open-services.net/bin/view/Main/OSLCCoreSpecQuery.html#Query_Parameters

Resource type to query the OSLC client for, specified as a cell array.

Object Functions
queryChangeRequests Query OSLC service provider for change requests
queryRequirementCollections Query OSLC service provider for requirement collections
queryRequirements Query OSLC service provider for requirements
queryTestCases Query OSLC service provider for test cases
queryTestExecutionRecords Query OSLC service provider for test execution records
queryTestPlans Query OSLC service provider for test plans
queryTestResults Query OSLC service provider for test results
queryTestScripts Query OSLC service provider for test scripts
setQueryParameter Set query parameter for OSLC query service

Examples

Create All Available Query Capabilities for a Given Client

This example shows how to create all available query capabilities for a configured OSLC client.

After you have created and configured an OSLC client as described in “Create and Configure an
OSLC Client for the Requirements Management Domain” on page 2-3, create all available query
capabilities for the client myClient.

myQueryCapability = getQueryService(myClient)

myQueryCapability =

 1×4 QueryCapability array with properties:

 queryParameter
 client
 queryBase
 resourceShape
 title
 resourceType

Examine the query capability resourceType to determine which query capability you want to use.

myQueryCapability(3).resourceType(2)

ans =

 1×1 cell array

 {'http://open-services.net/ns/rm#Requirement'}

Submit a Query Request with Query Capability

This example shows how to submit a query request with a configured OSLC client.

After you have created and configured an OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type.

 oslc.core.QueryCapability

2-17

myQueryCapability = getQueryService(myClient,'Requirement')

myQueryCapability =

 QueryCapability with properties:

 queryParameter: ''
 client: [1×1 oslc.Client]
 queryBase: 'https://localhost:9443/rm/views?oslc.query=true&projectURL=http...'
 resourceShape: {0×1 cell}
 title: 'Query Capability'
 resourceType: {1×2 cell}

Submit a query request to the service provider for the available requirement resources.

reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign the first returned requirement resource to the variable myReq, then fetch the full resource
properties for myReq. Examine the Title property.

myReq = reqs(1);
status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

title = myReq.Title

title =

 'Requirement 1'

Tips
• For information about query syntaxes, see Open Services for Lifecycle Collaboration Core
Specification Version 2.0 Query Syntax on the OSLC website.

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.rm.Requirement | oslc.cm.ChangeRequest | oslc.qm.TestCase |
getQueryService

2 Classes

2-18

https://archive.open-services.net/bin/view/Main/OSLCCoreSpecQuery.html
https://archive.open-services.net/bin/view/Main/OSLCCoreSpecQuery.html

External Websites
Query Capabilities
Open Services for Lifecycle Collaboration

 oslc.core.QueryCapability

2-19

https://archive.open-services.net/bin/view/Main/OslcCoreSpecification.html#Query_Capabilities
https://open-services.net/

oslc.qm.TestCase
Test case resource for OSLC quality management domain

Description
The oslc.qm.TestCase object represents test case resources in the quality management domain of
the Open Services for Lifecycle Collaboration (OSLC) service provider. After creating and configuring
oslc.Client and oslc.core.QueryCapability objects, query the service provider for available
test case resources with the queryTestCases function.

Creation
Create an oslc.qm.TestCase object by using the createTestCase function.

Properties
ResourceUrl — Resource navigation URL
character array

Navigation URL for the test case resource, specified as a character array.

Dirty — Uncommitted changes indicator
0 | 1

Indicator for uncommitted changes to the test case resource, specified as a logical 1or 0 where:

• 1 indicates the test case resource has uncommitted changes.
• 0 indicates the test case resource has no uncommitted changes.

Data Types: logical

IsFetched — Resource fetch status
0 | 1

test case resource fetch status, specified as a logical 1 or 0 where:

• 1 indicates the test case resource is fetched.
• 0 indicates the test case resource is not fetched.

Data Types: logical

Title — Test case title
character array

Test case title, specified as a character array.

Identifier — Test case resource identifier
character array

2 Classes

2-20

OSLC test case resource identifier, specified as a character array.

Object Functions
addRequirementLink Add requirement traceability link to local OSLC test resource object
addResourceProperty Add resource property to local OSLC resource object
addTextProperty Add text property to local OSLC resource object
commit Send local changes to OSLC service provider
fetch Retrieve full resource data from OSLC service provider
getProperty Get local contents of text property from OSLC resource object
getRDF Get resource RDF/XML data from OSLC resource object
getRequirementLinks Get locally stored requirement traceability links from OSLC test resource

object
getResourceProperty Get local contents of resource property from OSLC resource object
remove Remove resource from OSLC service provider
removeRequirementLink Remove requirement traceability link from local OSLC test resource

object
removeResourceProperty Remove resource property from local OSLC resource object
setProperty Set local contents of text property for OSLC resource object
setRDF Set RDF content for local OSLC resource object
setResourceUrl Set resource URL for local OSLC resource object
show View OSLC resource in system browser

Examples

Edit a Test Case and Commit Changes

This example shows how to submit a query request for test case resources with a configured OSLC
client, edit an existing test case resource, and commit the changes to the service provider.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test case resource type.

myQueryCapability = getQueryService(myClient,'TestCase');

Submit a query request to the service provider for the available test case resources.

testCases = queryTestCases(myQueryCapability)

testCases =

 1×4 TestCase array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign a test case resource to the variable myTestCase. Retrieve the full resource data from the
service provider for the test case resource. Examine the Title property.

myTestCase = testCases(1);
status = fetch(myTestCase,myClient)

 oslc.qm.TestCase

2-21

status =

 StatusCode enumeration

 OK

title = myTestCase.Title

title =

 'Test Case 1'

Edit the test case title and commit the change to the service provider.

myTestCase.Title = 'My New Test Case Title';
status = commit(myTestCase,myClient)

status =

 StatusCode enumeration

 OK

Open the test case resource in the system browser by using the show function.

show(myTestCase)

Create a New Test Case

This example shows how to submit a creation request for a new test case resource with a configured
OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a creation
factory for the test case resource type.

myCreationFactory = getCreationFactory(myClient,'TestCase');

Use the creation factory to create a test case resource with the title My New Test Case. Retrieve
the full resource data from the service provider for the test case resource and inspect the resource.

newTestCase = createTestCase(myCreationFactory,'My New Test Case');
fetch(newTestCase,myClient);
newTestCase

newTestCase =
 TestCase with properties:

 ResourceUrl: 'https://localhost:9443/qm/resource/itemName/_a9aS...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Test Case'
 Identifier: '301'

Open the test case resource in the system browser by using the show function.

2 Classes

2-22

show(newTestCase)

Version History
Introduced in R2021a

See Also
oslc.core.CreationFactory | oslc.core.QueryCapability | oslc.Client |
oslc.qm.TestExecutionRecord | oslc.qm.TestPlan | oslc.qm.TestResult |
oslc.qm.TestScript | oslc.rm.Requirement | createTestCase | queryTestCases

External Websites
Open Services for Lifecycle Collaboration
Resource: TestCase

 oslc.qm.TestCase

2-23

https://open-services.net/
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#Resource_TestCase

oslc.qm.TestExecutionRecord
Test execution record resource for OSLC quality management domain

Description
The oslc.qm.TestExecutionRecord object represents test execution record resources in the
quality management domain of the Open Services for Lifecycle Collaboration (OSLC) service provider.
After creating and configuring oslc.Client and oslc.core.QueryCapability objects, query the
service provider for available test execution record resources by using the
queryTestExecutionRecords function.

Creation
Create an oslc.qm.TestExecutionRecord object by using the createTestExecutionRecord
function.

Properties
ResourceUrl — Resource navigation URL
character array

Navigation URL for the test execution record resource, specified as a character array.

Dirty — Uncommitted changes indicator
0 | 1

Indicator for uncommitted changes to the test execution record resource, specified as a logical 1or 0
where:

• 1 indicates the test execution record resource has uncommitted changes.
• 0 indicates the test execution record resource has no uncommitted changes.

Data Types: logical

IsFetched — Resource fetch status
0 | 1

test execution record resource fetch status, specified as a logical 1 or 0 where:

• 1 indicates the test execution record resource is fetched.
• 0 indicates the test execution record resource is not fetched.

Data Types: logical

Title — Test execution record title
character array

Test execution record title, specified as a character array.

2 Classes

2-24

Identifier — Test execution record resource identifier
character array

OSLC test execution record resource identifier, specified as a character array.

Object Functions
addResourceProperty Add resource property to local OSLC resource object
addTextProperty Add text property to local OSLC resource object
commit Send local changes to OSLC service provider
fetch Retrieve full resource data from OSLC service provider
getProperty Get local contents of text property from OSLC resource object
getRDF Get resource RDF/XML data from OSLC resource object
getResourceProperty Get local contents of resource property from OSLC resource object
getRunsTestCase Get locally stored test case traceability link from OSLC test execution

record resource object
remove Remove resource from OSLC service provider
removeResourceProperty Remove resource property from local OSLC resource object
setProperty Set local contents of text property for OSLC resource object
setRDF Set RDF content for local OSLC resource object
setResourceUrl Set resource URL for local OSLC resource object
show View OSLC resource in system browser

Examples

Edit a Test Execution Record and Commit Changes

This example shows how to submit a query request for test execution record resources with a
configured OSLC client, edit an existing test execution record resource, and commit the changes to
the service provider.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test execution record resource type.

myQueryCapability = getQueryService(myClient,'TestExecutionRecord');

Submit a query request to the service provider for the available test execution record resources.

testERs = queryTestExecutionRecords(myQueryCapability)

testERs =

 1×2 TestExecutionRecord array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign a test execution record resource to the variable myTestER. Retrieve the full resource data
from the service provider for the test execution record resource. Examine the Title property.

 oslc.qm.TestExecutionRecord

2-25

myTestER = testERs(1);
status = fetch(myTestER,myClient)

status =

 StatusCode enumeration

 OK

title = myTestER.Title

title =

 'Test Case 1'

Edit the test execution record title and commit the change to the service provider.

myTestER.Title = 'My New Test Execution Record Title';
status = commit(myTestER,myClient)

status =

 StatusCode enumeration

 OK

Open the test execution record resource in the system browser by using the show function.

show(myTestER)

Create a New Test Execution Record

This example shows how to submit a creation request for a new test execution record resource with a
configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a creation
factory for the test execution record resource type.

myCreationFactory = getCreationFactory(myClient,'TestExecutionRecord');

Use the creation factory to create a test execution record resource with the title My New Test
Execution Record and associate it with the test case resource URL testURL from a test case. For
more information about querying the service provider for test cases, see “Edit a Test Case and
Commit Changes” on page 2-21. Retrieve full resource data from the service provider for the test
execution record resource and inspect the resource.

newTestER = createTestExecutionRecord(myCreationFactory, ...
 'My New Test Execution Record',testURL);
fetch(newTestCase,myClient);
newTestER

newTestER =
 TestExecutionRecord with properties:

 ResourceUrl: 'https://localhost:9443/qm/oslc_qm/resources/CfkIoW...'
 Dirty: 0

2 Classes

2-26

 IsFetched: 1
 Title: 'My New Test Execution Record'
 Identifier: '301'

Open the test execution record resource in the system browser by using the show function.

show(newTestER)

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | oslc.core.QueryCapability |
oslc.qm.TestCase | oslc.qm.TestPlan | oslc.qm.TestResult | oslc.qm.TestScript |
queryTestExecutionRecords | createTestExecutionRecord

External Websites
Open Services for Lifecycle Collaboration
Resource: TestExecutionRecord

 oslc.qm.TestExecutionRecord

2-27

https://open-services.net/
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#Resource_TestExecutionRecord

oslc.qm.TestPlan
Test plan resource for OSLC quality management domain

Description
The oslc.qm.TestPlan object represents test plan resources in the quality management domain of
the Open Services for Lifecycle Collaboration (OSLC) service provider. After creating and configuring
oslc.Client and oslc.core.QueryCapability objects, query the service provider for available
test plan resources by using the queryTestPlans function.

Creation
Create an oslc.qm.TestPlan object by using the createTestPlan function.

Properties
ResourceUrl — Resource navigation URL
character array

Navigation URL for the test plan resource, specified as a character array.

Dirty — Uncommitted changes indicator
0 | 1

Indicator for uncommitted changes to the test plan resource, specified as a logical 1or 0 where:

• 1 indicates the test plan resource has uncommitted changes.
• 0 indicates the test plan resource has no uncommitted changes.

Data Types: logical

IsFetched — Resource fetch status
0 | 1

test plan resource fetch status, specified as a logical 1 or 0 where:

• 1 indicates the test plan resource is fetched.
• 0 indicates the test plan resource is not fetched.

Data Types: logical

Title — Test plan title
character array

Test plan title, specified as a character array.

Identifier — Test plan resource identifier
character array

2 Classes

2-28

OSLC test plan resource identifier, specified as a character array.

Object Functions
addResourceProperty Add resource property to local OSLC resource object
addTextProperty Add text property to local OSLC resource object
commit Send local changes to OSLC service provider
fetch Retrieve full resource data from OSLC service provider
getProperty Get local contents of text property from OSLC resource object
getRDF Get resource RDF/XML data from OSLC resource object
getResourceProperty Get local contents of resource property from OSLC resource object
remove Remove resource from OSLC service provider
removeResourceProperty Remove resource property from local OSLC resource object
setProperty Set local contents of text property for OSLC resource object
setRDF Set RDF content for local OSLC resource object
setResourceUrl Set resource URL for local OSLC resource object
show View OSLC resource in system browser

Examples

Edit a Test Plan and Commit Changes

This example shows how to submit a query request for test plan resources with a configured OSLC
client, edit an existing test plan resource, and commit the changes to the service provider.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test plan resource type.

myQueryCapability = getQueryService(myClient,'TestPlan');

Submit a query request to the service provider for the available test plan resources.

testPlans = queryTestPlans(myQueryCapability)

testPlans =

 1×2 TestPlan array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign a test plan resource to the variable myTestPlan. Retrieve the full resource data from the
service provider for the test plan resource. Examine the Title property.

myTestPlan = testPlans(1);
status = fetch(myTestPlan,myClient)

status =

 StatusCode enumeration

 oslc.qm.TestPlan

2-29

 OK

title = myTestPlan.Title

title =

 'Test Plan 1'

Edit the test plan title and commit the change to the service provider.

myTestPlan.Title = 'My New Test Plan Title';
status = commit(myTestPlan,myClient)

status =

 StatusCode enumeration

 OK

Open the test plan resource in the system browser by using the show function.

show(myTestCase)

Create a New Test Plan

This example shows how to submit a creation request for a new test plan resource with a configured
OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a creation
factory for the test plan resource type.

myCreationFactory = getCreationFactory(myClient,'TestPlan');

Use the creation factory to create a test plan resource with the title My New Test Plan. Retrieve
the full resource data from the service provider for the test plan resource and inspect the resource.

newTestPlan = createTestPlan(myCreationFactory,'My New Test Plan');
fetch(newTestPlan,myClient);
newTestPlan

newTestPlan =
 TestPlan with properties:

 ResourceUrl: 'https://localhost:9443/qm/resource/itemName/_f56s...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Test Plan'
 Identifier: '301'

Open the test plan resource in the system browser by using the show function.

2 Classes

2-30

show(newTestPlan)

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | oslc.core.QueryCapability |
oslc.qm.TestCase | oslc.qm.TestExecutionRecord | oslc.qm.TestResult |
oslc.qm.TestScript | createTestPlan | queryTestPlans

External Websites
Open Services for Lifecycle Collaboration
Resource: TestPlan

 oslc.qm.TestPlan

2-31

https://open-services.net/
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#Resource_TestPlan

oslc.qm.TestResult
Test result resource for OSLC quality management domain

Description
The oslc.qm.TestResult object represents test result resources in the quality management
domain of the Open Services for Lifecycle Collaboration (OSLC) service provider. After creating and
configuring oslc.Client and oslc.core.QueryCapability objects, query the service provider
for available test result resources by using the queryTestResults function.

Creation
Create an oslc.qm.TestResult by using the createTestResult function.

Properties
ResourceUrl — Resource navigation URL
character array

Navigation URL for the test result resource, specified as a character array.

Dirty — Uncommitted changes indicator
0 | 1

Indicator for uncommitted changes to the test result resource, specified as a logical 1or 0 where:

• 1 indicates the test result resource has uncommitted changes.
• 0 indicates the test result resource has no uncommitted changes.

Data Types: logical

IsFetched — Resource fetch status
0 | 1

test result resource fetch status, specified as a logical 1 or 0 where:

• 1 indicates the test result resource is fetched.
• 0 indicates the test result resource is not fetched.

Data Types: logical

Title — Test result title
character array

Test result title, specified as a character array.

Identifier — Test result resource identifier
character array

2 Classes

2-32

OSLC test result resource identifier, specified as a character array.

Object Functions
addResourceProperty Add resource property to local OSLC resource object
addTextProperty Add text property to local OSLC resource object
commit Send local changes to OSLC service provider
fetch Retrieve full resource data from OSLC service provider
getProducedTestExecutionRecord Get locally stored test execution record traceability link from

Open Services for Lifecycle Collaboration (OSLC) test result
resource object

getProperty Get local contents of text property from OSLC resource object
getRDF Get resource RDF/XML data from OSLC resource object
getReportsOnTestCase Get locally stored test case traceability link from OSLC test

result resource object
getResourceProperty Get local contents of resource property from OSLC resource

object
getStatus Get locally stored status from OSLC test result resource object
remove Remove resource from OSLC service provider
removeResourceProperty Remove resource property from local OSLC resource object
setProperty Set local contents of text property for OSLC resource object
setRDF Set RDF content for local OSLC resource object
setResourceUrl Set resource URL for local OSLC resource object
show View OSLC resource in system browser

Examples

Edit a Test Result and Commit Changes

This example shows how to submit a query request for test result resources with a configured OSLC
client, edit an existing test result resource, and commit the changes to the service provider.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test result resource type.

myQueryCapability = getQueryService(myClient,'TestResult');

Submit a query request to the service provider for the available test result resources.

testResults = queryTestResults(myQueryCapability)

testResults =

 1×2 TestResult array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign a test result resource to the variable myTestResult. Retrieve the full resource data from the
service provider for the test result resource. Examine the Title property.

 oslc.qm.TestResult

2-33

myTestResult = testResults(1);
status = fetch(myTestResult,myClient)

status =

 StatusCode enumeration

 OK

title = myTestResult.Title

title =

 'Test Case 1'

Edit the test result title and commit the change to the service provider.

myTestResult.Title = 'My New Test Result Title';
status = commit(myTestResult,myClient)

status =

 StatusCode enumeration

 OK

Open the test result resource in the system browser by using the show function.

show(myTestResult)

Create a New Test Result

This example shows how to submit a creation request for a new test result resource with a configured
OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a creation
factory for the test result resource type.

myCreationFactory = getCreationFactory(myClient,'TestResult');

Use the creation factory to create a test result resource with the title My New Test Result and
associate it with the test case resource URL specified by testURL and the test execution record
resource URL specified by executionURL. Set the test result status to Unverified. For more
information about querying the service provider for test cases and execution records, see “Edit a Test
Case and Commit Changes” on page 2-21 and “Edit a Test Execution Record and Commit Changes”
on page 2-25. Retrieve the full resource data from the service provider for the test result resource
and inspect the resource.

newTestResult = createTestResult(myCreationFactory, ...
 'My New Test Result',testURL,executionURL,'Unverified');
fetch(newTestCase,myClient);
newTestResult

newTestResult =
 TestResult with properties:

2 Classes

2-34

 ResourceUrl: 'https://localhost:9443/qm/oslc_qm/resources/CdffuW...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Test Result'
 Identifier: '1456'

Open the test result resource in the system browser by using the show function.

show(newTestResult)

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | oslc.core.QueryCapability |
oslc.qm.TestCase | oslc.qm.TestExecutionRecord | oslc.qm.TestPlan |
oslc.qm.TestScript | queryTestResults | createTestResult

External Websites
Open Services for Lifecycle Collaboration
Resource: TestResult

 oslc.qm.TestResult

2-35

https://open-services.net/
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#Resource_TestResult

oslc.qm.TestScript
Test script resource for OSLC quality management domain

Description
The oslc.qm.TestScript object represents test script resources in the quality management
domain of the Open Services for Lifecycle Collaboration (OSLC) service provider. After creating and
configuring oslc.Client and oslc.core.QueryCapability objects, query the service provider
for available test script resources by using the queryTestScripts function.

Creation
Create an oslc.qm.TestScript object by using the createTestScript function.

Properties
ResourceUrl — Resource navigation URL
character array

Navigation URL for the test script resource, specified as a character array.

Dirty — Uncommitted changes indicator
0 | 1

Indicator for uncommitted changes to the test script resource, specified as a logical 1or 0 where:

• 1 indicates the test script resource has uncommitted changes.
• 0 indicates the test script resource has no uncommitted changes.

Data Types: logical

IsFetched — Resource fetch status
0 | 1

test script resource fetch status, specified as a logical 1 or 0 where:

• 1 indicates the test script resource is fetched.
• 0 indicates the test script resource is not fetched.

Data Types: logical

Title — Test script title
character array

Test script title, specified as a character array.

Identifier — Test script resource identifier
character array

2 Classes

2-36

Test script resource identifier, specified as a character array.

Object Functions
addRequirementLink Add requirement traceability link to local OSLC test resource object
addResourceProperty Add resource property to local OSLC resource object
addTextProperty Add text property to local OSLC resource object
commit Send local changes to OSLC service provider
fetch Retrieve full resource data from OSLC service provider
getProperty Get local contents of text property from OSLC resource object
getRDF Get resource RDF/XML data from OSLC resource object
getRequirementLinks Get locally stored requirement traceability links from OSLC test resource

object
getResourceProperty Get local contents of resource property from OSLC resource object
remove Remove resource from OSLC service provider
removeRequirementLink Remove requirement traceability link from local OSLC test resource

object
removeResourceProperty Remove resource property from local OSLC resource object
setProperty Set local contents of text property for OSLC resource object
setRDF Set RDF content for local OSLC resource object
setResourceUrl Set resource URL for local OSLC resource object
show View OSLC resource in system browser

Examples

Edit a Test Script and Commit Changes

This example shows how to submit a query request for test script resources with a configured OSLC
client, edit an existing test script resource, and commit the changes to the service provider.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a query
capability for the test script resource type.

myQueryCapability = getQueryService(myClient,'TestScript');

Submit a query request to the service provider for the available test script resources.

testScripts = queryTestScripts(myQueryCapability)

testScripts =

 1×7 TestScript array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign a test script resource to the variable myTestScript. Retrieve the full resource data from the
service provider for the test script resource. Examine the Title property.

myTestScript = testScripts(1);
status = fetch(myTestScript,myClient)

 oslc.qm.TestScript

2-37

status =

 StatusCode enumeration

 OK

title = myTestScript.Title

title =

 'Test Script 1'

Edit the test script title and commit the change to the service provider.

myTestScript.Title = 'My New Test Script Title';
status = commit(myTestScript,myClient)

status =

 StatusCode enumeration

 OK

Open the test script resource in the system browser by using the show function.

show(myTestScript)

Create a New Test Script

This example shows how to submit a creation request for a new test script resource with a configured
OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Quality Management Domain” on page 2-4, create a creation
factory for the test script resource type.

myCreationFactory = getCreationFactory(myClient,'TestScript');

Use the creation factory to create a test script resource with the creation factory with the title My
New Test Script. Retrieve the full resource data from the service provider for the test script
resource and inspect the resource.

newTestScript = createTestScript(myCreationFactory, ...
 'My New Test Script');
fetch(newTestScript,myClient);
newTestScript

newTestScript =
 TestScript with properties:

 ResourceUrl: 'https://localhost:9443/qm/resource/itemName/_b19w2...'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Test Script'
 Identifier: '498'

Open the test script resource in the system browser by using the show function.

2 Classes

2-38

show(newTestScript)

Version History
Introduced in R2021a

See Also
oslc.Client | oslc.core.CreationFactory | oslc.core.QueryCapability |
oslc.rm.Requirement | oslc.qm.TestCase | oslc.qm.TestExecutionRecord |
oslc.qm.TestPlan | oslc.qm.TestResult | createTestScript | queryTestScripts

External Websites
Open Services for Lifecycle Collaboration
Resource: TestScript

 oslc.qm.TestScript

2-39

https://open-services.net/
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html#Resource_TestScript

oslc.rm.Requirement
Requirement resource for OSLC requirements management domain

Description
The oslc.rm.Requirement object represents requirement resources in the requirements
management domain of the Open Services for Lifecycle Collaboration (OSLC) service provider. After
creating and configuring oslc.Client and oslc.core.QueryCapability objects, query the
service provider for available requirement resources by using the queryRequirements function.

Creation
Create an oslc.rm.Requirement object by using the createRequirement function.

Properties
ResourceUrl — Resource navigation URL
character array

Navigation URL for the requirement resource, specified as a character array.

Dirty — Uncommitted changes indicator
0 | 1

Indicator for uncommitted changes to the requirement resource, specified as a logical 1or 0 where:

• 1 indicates the requirement resource has uncommitted changes.
• 0 indicates the requirement resource has no uncommitted changes.

Data Types: logical

IsFetched — Resource fetch status
0 | 1

requirement resource fetch status, specified as a logical 1 or 0 where:

• 1 indicates the requirement resource is fetched.
• 0 indicates the requirement resource is not fetched.

Data Types: logical

Title — Requirement title
character array

Requirement title, specified as a character array.

Identifier — Requirement resource identifier
character array

2 Classes

2-40

OSLC requirement resource identifier, specified as a character array.

Object Functions
addLink Add link to local OSLC requirement resource object
addResourceProperty Add resource property to local OSLC resource object
addTextProperty Add text property to local OSLC resource object
commit Send local changes to OSLC service provider
fetch Retrieve full resource data from OSLC service provider
getLinks Get locally stored traceability links from OSLC requirement resource

object
getProperty Get local contents of text property from OSLC resource object
getRDF Get resource RDF/XML data from OSLC resource object
getResourceProperty Get local contents of resource property from OSLC resource object
getSLRequirements Get imported referenced requirement associated with OSLC requirement

resource object
remove Remove resource from OSLC service provider
removeLink Remove link from local OSLC requirement resource object
removeResourceProperty Remove resource property from local OSLC resource object
setProperty Set local contents of text property for OSLC resource object
setRDF Set RDF content for local OSLC resource object
setResourceUrl Set resource URL for local OSLC resource object
show View OSLC resource in system browser

Examples

Edit a Requirement and Commit Changes

This example shows how to submit a query request for requirement resources with a configured
OSLC client, edit an existing requirement resource, and commit the changes to the service provider.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement resource type.

myQueryCapability = getQueryService(myClient,'Requirement');

Submit a query request to the service provider for the available requirement resources.

reqs = queryRequirements(myQueryCapability)

reqs =

 1×30 Requirement array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

Assign a requirement resource to the variable myReq. Retrieve the full resource data from the service
provider for the requirement resource. Examine the Title property.

 oslc.rm.Requirement

2-41

myReq = reqs(1);
status = fetch(myReq,myClient)

status =

 StatusCode enumeration

 OK

title = myReq.Title

title =

 'Requirement 1'

Edit the requirement title and commit the change to the service provider.

myReq.Title = 'My New Requirement Title';
status = commit(myReq,myClient)

status =

 StatusCode enumeration

 OK

Open the requirement resource in the system browser by using the show function.

show(myReq)

Create a New Requirement

This example shows how to submit a creation request for a new requirement resource with a
configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a creation
factory for the requirement resource type.

myCreationFactory = getCreationFactory(myClient,'Requirement');

Use the creation factory to create a new requirement resource with the title My New Requirement.
Retrieve the full resource data from the service provider for the requirement resource and inspect
the resource.

newReq = createRequirement(myCreationFactory,'My New Requirement');
fetch(newReq,myClient);
newReq

newReq =

 Requirement with properties:

 ResourceUrl: 'https://localhost:9443/rm/resources/_72lxMWJREeup0...'
 Dirty: 0
 IsFetched: 1

2 Classes

2-42

 Title: 'My New Requirement'
 Identifier: '1806'

Open the requirement resource in the system browser by using the show function.

show(newReq)

Version History
Introduced in R2021a

See Also
oslc.core.CreationFactory | oslc.core.QueryCapability | oslc.Client |
oslc.rm.RequirementCollection | oslc.cm.ChangeRequest | oslc.qm.TestCase |
queryRequirements | createRequirement

External Websites
Open Services for Lifecycle Collaboration
Resource Requirement

 oslc.rm.Requirement

2-43

https://open-services.net/
https://archive.open-services.net/bin/view/Main/RmSpecificationV2.html#Resource_Requirement

oslc.rm.RequirementCollection
Requirement collection resource for OSLC requirements management domain

Description
The oslc.rm.RequirementCollection object represents requirement collection resources in the
requirements management domain of the Open Services for Lifecycle Collaboration (OSLC) service
provider. After creating and configuring oslc.Client and oslc.core.QueryCapability objects,
query the service provider for available requirement collection resources by using the
queryRequirementCollections function.

Creation
Create an oslc.rm.RequirementCollection object by using the
createRequirementCollection function.

Properties
ResourceUrl — Resource navigation URL
character array

Navigation URL for the requirement collection resource, specified as a character array.

Dirty — Uncommitted changes indicator
0 | 1

Indicator for uncommitted changes to the requirement collection resource, specified as a logical 1or
0 where:

• 1 indicates the requirement collection resource has uncommitted changes.
• 0 indicates the requirement collection resource has no uncommitted changes.

Data Types: logical

IsFetched — Resource fetch status
0 | 1

requirement collection resource fetch status, specified as a logical 1 or 0 where:

• 1 indicates the requirement collection resource is fetched.
• 0 indicates the requirement collection resource is not fetched.

Data Types: logical

Title — Requirement collection title
character array

Requirement collection title, specified as a character array.

2 Classes

2-44

Identifier — Requirement collection resource identifier
character array

OSLC requirement collection resource identifier, specified as a character array.

Object Functions
addLink Add link to local OSLC requirement resource object
addResourceProperty Add resource property to local OSLC resource object
addTextProperty Add text property to local OSLC resource object
commit Send local changes to OSLC service provider
fetch Retrieve full resource data from OSLC service provider
getLinks Get locally stored traceability links from OSLC requirement resource

object
getProperty Get local contents of text property from OSLC resource object
getRDF Get resource RDF/XML data from OSLC resource object
getResourceProperty Get local contents of resource property from OSLC resource object
getSLRequirements Get imported referenced requirement associated with OSLC requirement

resource object
remove Remove resource from OSLC service provider
removeLink Remove link from local OSLC requirement resource object
removeResourceProperty Remove resource property from local OSLC resource object
setProperty Set local contents of text property for OSLC resource object
setRDF Set RDF content for local OSLC resource object
setResourceUrl Set resource URL for local OSLC resource object
show View OSLC resource in system browser

Examples

Edit a Requirement Collection and Commit Changes

This example shows how to submit a query request for requirement collection resources with a
configured OSLC client, edit an existing requirement collection resource, and commit the changes to
the service provider.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a query
capability for the requirement collection resource type.

myQueryCapability = getQueryService(myClient,'RequirementCollection');

Submit a query request to the service provider for the available requirement collection resources.

reqCollections = queryRequirementCollections(myQueryCapability)

reqCollections =

 1×5 RequirementCollection array with properties:

 ResourceUrl
 Dirty
 IsFetched
 Title
 Identifier

 oslc.rm.RequirementCollection

2-45

Assign a requirement collection resource to the variable myReqCollection. Retrieve the full
resource data from the service provider for the requirement collection resource. Examine the Title
property.

myReqCollection = reqCollections(1);
status = fetch(myReqCollection,myClient)

status =

 StatusCode enumeration

 OK

title = myReqCollection.Title

title =

 'Requirement Collection 1'

Edit the requirement title and commit the change to the service provider.

myReqCollection.Title = 'My New Requirement Collection Title';
status = commit(myReqCollection,myClient)

status =

 StatusCode enumeration

 OK

Open the requirement collection resource in the system browser by using the show function.

show(myReqCollection)

Create a New Requirement Collection

This example shows how to submit a creation request for a new requirement collection resource with
a configured OSLC client.

After you have created and configured the OSLC client myClient as described in “Create and
Configure an OSLC Client for the Requirements Management Domain” on page 2-3, create a creation
factory for the requirement collection resource type.

myCreationFactory = getCreationFactory(myClient,...
'RequirementCollection');

Use the creation factory to create a requirement collection resource with the title My New
Requirement Collection. Retrieve the full resource data from the service provider for the
requirement collection resource and inspect the resource.

newReqCollection = createRequirementCollection(myCreationFactory,...
'My New Requirement Collection')
fetch(newReqCollection,myClient);
newReqCollection

newReqCollection =

2 Classes

2-46

 RequirementCollection with properties:
 ResourceUrl: 'https://localhost:9443/rm/resources/_72lxMWJREeup0r..'
 Dirty: 0
 IsFetched: 1
 Title: 'My New Requirement Collection'
 Identifier: '1808'

Open the requirement collection resource in the system browser by using the show function.

show(newReqCollection)

Version History
Introduced in R2021a

See Also
oslc.core.CreationFactory | oslc.core.QueryCapability | oslc.Client |
oslc.rm.Requirement | queryRequirementCollections | createRequirementCollection

External Websites
Open Services for Lifecycle Collaboration
Resource RequirementCollection

 oslc.rm.RequirementCollection

2-47

https://open-services.net/
https://archive.open-services.net/bin/view/Main/RmSpecificationV2.html#Resource_RequirementCollection

slreq.BaseEditableItem class
Package: slreq

Superclass for heterogeneous editable requirement arrays

Description
slreq.BaseEditableItem is an abstract class that returns heterogeneous arrays of
slreq.Requirement and slreq.Justification objects. A heterogeneous array is an array of
objects that differ in their specific class, but are all derived from or are instances of a root class. For
more information, see “Designing Heterogeneous Class Hierarchies” and
matlab.mixin.Heterogeneous.

The slreq.BaseEditableItem class is a handle class.

Version History
Introduced in R2018b

See Also
Classes
slreq.BaseItem | slreq.Requirement | slreq.Reference | slreq.Justification

2 Classes

2-48

slreq.BaseItem class
Package: slreq

Superclass for heterogeneous requirement arrays

Description
slreq.BaseItem is an abstract class that returns heterogeneous arrays of slreq.Requirement,
slreq.Reference, and slreq.Justification objects. A heterogeneous array is an array of
objects that differ in their specific class, but are all derived from or are instances of a root class. For
more information, see “Designing Heterogeneous Class Hierarchies” and
matlab.mixin.Heterogeneous.

The slreq.BaseItem class is a handle class.

Version History
Introduced in R2018b

See Also
Classes
slreq.BaseEditableItem | slreq.Requirement | slreq.Reference | slreq.Justification

 slreq.BaseItem class

2-49

slreq.Justification class
Package: slreq

Work with slreq.Justification objects

Description
Use slreq.Justification objects to work with requirements that you exclude from the
implementation and verification status metrics roll-up for your requirements sets. Justify a
requirement by creating an outgoing link from the slreq.Justification object to the
requirement and setting the link type to Implement or Verify.

Creation
jst = slreq.find(rs, 'Type', 'Justification', 'PropertyName', PropertyValue)
finds and returns an slreq.Justification object jst in the requirement set rs with additional
properties specified by PropertyName and PropertyValue.

jst = add(jt, 'PropertyName', PropertyValue) adds a child justification jst to the parent
justification jt with additional properties specified by PropertyName and PropertyValue.

Input Arguments

rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

jt — Justification
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments

jst — Justification
slreq.Justification object

Justification, returned as an slreq.Justification object.

Properties
Id — Justification custom ID
character vector

Custom ID of the justification, returned as a character vector. You cannot use spaces and '#' in
custom IDs.

2 Classes

2-50

Attributes:

GetAccess public
SetAccess public

Summary — Justification summary
character vector

Justification summary text, specified as a one-line, plain text character vector.

Attributes:

GetAccess public
SetAccess public

Description — Justification description
character vector

Justification description text, specified as a multiline character vector.

Attributes:

GetAccess public
SetAccess public

Keywords — Justification keywords
character array

Justification keywords, specified as a character array.

Attributes:

GetAccess public
SetAccess public

Rationale — Justification rationale
character vector

Justification rationale text, specified as a multiline character vector.

Attributes:

GetAccess public
SetAccess public

CreatedOn — Date justification was created
datetime value

The date on which the justification was created, specified as a datetime value. The software
populates this property.

Attributes:

GetAccess public
SetAccess private

CreatedBy — Justification creator
character vector

 slreq.Justification class

2-51

The name of the individual or organization who created the requirement.

Attributes:

GetAccess public
SetAccess private

ModifiedBy — Justification modifier
character vector

The name of the individual or organization who last modified the justification.

Attributes:

GetAccess public
SetAccess private

IndexEnabled — Index enabled indicator
1 (default) | 0

Indicates whether the index is enabled (1) or disabled (0), returned as a 1 or 0 of data type logical.
If you disable the index, Requirements Toolbox does not count this justification when it creates the
numbered hierarchy list. However, the justification remains in the same place in the hierarchy.

Attributes:

GetAccess public
SetAccess public

IndexNumber — User-specified index value
empty double array (default) | int32 array

User-specified index value, returned as an empty double array or an int32 array. If empty,
Requirements Toolbox calculates the Index value. Otherwise, Requirements Toolbox sets the Index
property to the specified integer value.

Attributes:

GetAccess public
SetAccess public

SID — Justification Session Independent Identifier
character vector

The Session Independent Identifier corresponding to the justification.

Attributes:

GetAccess public
SetAccess private

FileRevision — Justification revision number
scalar

Justification revision number, specified as a scalar.

2 Classes

2-52

Attributes:

GetAccess public
SetAccess private

ModifiedOn — Date justification was modified
datetime value

The date on which the justification was last modified, specified as a datetime value. The software
populates this property.

Attributes:

GetAccess public
SetAccess private

Dirty — Unsaved changes indicator
0 | 1

Indicates if the requirement has unsaved changes (1) or does not have unsaved changes (0).

Attributes:

GetAccess public
SetAccess private

Comments — Justification comments
structure array

The comments that are attached with the justification, specified as a structure.

Attributes:

GetAccess public
SetAccess private

Index — Justification index
character array

The index of the justification, specified as a character array.

Attributes:

GetAccess public
SetAccess private

 slreq.Justification class

2-53

Methods
add Add child justification
addComment Add comments to justifications
children Find children justifications
copy Copy and paste justification
demote Demote justifications
find Find children of parent justification
getAttribute Get justification attributes
isFilteredIn Check filtered justifications
isHierarchical Check if justification is hierarchical
move Move justification in hierarchy
moveDown Move justification down in hierarchy
moveUp Move justification up in hierarchy
outLinks Get outgoing links for justifications
parent Find parent item of justification
promote Promote justifications
remove Remove justification items
reqSet Return parent requirement set
setAttribute Set justification attributes
setHierarchical Change hierarchical justification status

Examples
Add Child Justifications

This example shows how to add a child justification under a justification.

Load a requirement set called myReqSet.

rs = slreq.load("myReqSet");

Find justification objects in the requirement set.

myJustifications = find(rs,"Type","Justification")

myJustifications =

 1×2 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy

2 Classes

2-54

 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

Add a child justification to the first justification in the array.

myChildJustification = add(myJustifications(1),"Id","2.1",...
"Summary","New Child Justification")

myChildJustification =

 Justification with properties:

 Id: '2.1'
 Summary: 'New Child Justification'
 Description: ''
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 25-Aug-2017 14:37:29
 CreatedBy: 'Jane Doe'
 ModifiedBy: 'John Doe'
 SID: 73
 FileRevision: 1
 ModifiedOn: 26-Aug-2017 17:30:20
 Dirty: 0
 Comments: [0×0 struct]

Version History
Introduced in R2018b

See Also
slreq.Reference | slreq.ReqSet | slreq.Requirement

 slreq.Justification class

2-55

slreq.Link class
Package: slreq

Work with link objects

Description
When you establish a traceable association between artifacts, Requirements Toolbox creates an
slreq.Link object to store source and destination data of the link.

Creation
link = slreq.createLink(src, dest) creates an slreq.Link object link with source and
destination artifacts specified by src and dest respectively. The slreq.Link object is stored in the
Link set file that belongs to src.

outLinks = slreq.outLinks(src) returns an array of slreq.Link objects outLinks that
contains the outgoing links from the source artifact src.

inLinks = slreq.inLinks(dest) returns an array of slreq.Link objects inLinks that
contains the incoming links to the destination artifact dest.

Input Arguments

src — Link source artifact
struct

Link source artifact, specified as a MATLAB structure.

dest — Link destination artifact
struct

Link destination artifact, specified as a MATLAB structure.

Output Arguments

link — Link object
slreq.Link object

Handle to a link, returned as an slreq.Link object.

outLinks — Outgoing links
slreq.Link object array

Array of outgoing links.

inLinks — Incoming links
slreq.Link object array

Array of incoming links.

2 Classes

2-56

Properties
CreatedOn — Date link was created
datetime value

The date on which the link was created, specified as a datetime value. The software populates this
property.

CreatedBy — Link creator
character vector

The name of the individual or organization who created the link.

ModifiedOn — Date link was modified
datetime value

The date on which the link was last modified, specified as a datetime value. The software populates
this property.

ModifiedBy — Link modifier
character vector

The name of the individual or organization who last modified the link.

Comments — Link comments
struct

The comments that are attached with the link, returned as a structure.

Type — Link type
"Relate" | "Implement" | "Verify" | "Derive" | "Refine" | "Confirm" | string scalar |
character vector

Link type enumeration, specified as one of the options in the table:

Type Description
"Relate" • General relationship between items for most

use cases
• Bi-directional link

"Implement" • Specifies the source item that implements the
requirement

• Contributes to the implementation status

For more information, see “Review Requirements
Implementation Status”.

 slreq.Link class

2-57

Type Description
"Verify" • Specifies which source item verifies the

requirement
• Contributes to the verification status if the

source item is one of the accepted item types

For more information, see “Review Requirements
Verification Status”.

"Derive" Specifies which source item derives the
destination item

"Refine" Specifies which source item adds detail for the
functionality specified by the destination item

"Confirm" • Specifies relationship between a requirement
and an external test result source

• Can contribute to the verification status in
certain cases

For more information, see “Include Results from
External Sources in Verification Status”.

string scalar or character vector String scalar or character vector that specifies a
custom link type or stereotype. For more
information, see “Define Custom Requirement
and Link Types and Properties”.

For more information, see “Link Types”.

Description — Link description
character vector

Link descriptive text, specified as a multi-line character vector.

Keywords — Link keywords
character array

Link keywords, specified as character array.

Rationale — Link rationale
character vector

Link rationale text, specified as a multiline character vector.

SID — Link Session Independent Identifier
character vector

The Session Independent Identifier corresponding to the link.

2 Classes

2-58

Methods

destination Get link destination
getAttribute Get link property values
isFilteredIn Check filtered links
isResolved Check if the link is resolved
isResolvedDestination Check if the link destination is resolved
isResolvedSource Check if the link source is resolved
linkSet Return parent link set
remove Delete links
setAttribute Set link property values
setDestination Set requirement link destination
setSource Set requirement link source
source Get link source

Examples

Create a Link

This example shows how to create a link.

Create a link between the currently selected Simulink block and a requirement req.

link1 = slreq.createLink(gcb,req)

link1 =

 Link with properties:

 Type: 'Implement'
 Description: 'Plant Specs'
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 02-Sep-2017 15:49:28
 CreatedBy: 'Jane Doe'
 ModifiedOn: 21-Oct-2017 11:34:12
 ModifiedBy: 'John Doe'
 Comments: [0×0 struct]

Get Incoming Links

This example shows how to get the incoming links for a requirement.

Load a requirement set called myReqSet.

rs = slreq.load("myReqSet");

Find a requirement in the requirement with ID R1.1.

myReq = find(rs,"Type","Requirement","Id","R1.1");

 slreq.Link class

2-59

Query incoming links to the requirement.

inLinks = slreq.inLinks(myReq);

Get Outgoing Links

This example shows how to get the outgoing links for a link source.

Load a link set called c5.slmx.

myLinkSet = slreq.load("c5.slx");

Get the link sources from the link set.

allSrcs = sources(myLinkSet);

Get the outgoing links for the first link source.

myLink = slreq.outLinks(allSrcs(1));

Version History
Introduced in R2018a

See Also
slreq.LinkSet | slreq.createLink | slreq.ReqSet | slreq.Reference |
slreq.Requirement

Topics
“Create and Store Links”

2 Classes

2-60

slreq.LinkSet class
Package: slreq

Work with link sets

Description
Instances of slreq.LinkSet are Link Set objects. Links are organized in link sets. Each link set is
associated with a source artifact such as a Simulink model or a data dictionary and is serialized into a
separate file which stores the links associated with it. The default location and name of the link set
file matches that of the source artifact.

Creation
allLinkSets = slreq.find('Type', 'LinkSet') finds and returns an array of loaded
slreq.LinkSet objects allLinkSets.

myLinkSet = slreq.find('Type', 'LinkSet', 'Name', ArtifactName) finds and returns
an slreq.LinkSet object myLinkSet matching the artifact name specified by ArtifactName.

myLinkSet = slreq.load(ArtifactName) loads an slreq.LinkSet object myLinkSet
matching the artifact name specified by ArtifactName.

Input Arguments

ArtifactName — Link set artifact name
character vector

The name of the link set artifact, specified as a character vector.

Output Arguments

allLinkSets — Link sets
slreq.LinkSet array

Array of loaded link sets.

myLinkSet — Link set
slreq.LinkSet object

Link set, returned as an slreq.LinkSet object.

Properties
Filename — Link set file path
character vector

File path of the link set, specified as a character vector. By default, the link set is stored in the same
folder as the artifact and has the same base file name and an .slmx extension.

 slreq.LinkSet class

2-61

Artifact — Artifact containing link sources
character vector

Artifact that contains the link sources for the link set, specified as a character vector. When you
create a link, the link set is associated with the artifact that the link source item belongs to. By
default, the link set is stored in the same folder as the artifact and has the same base file name and
an .slmx extension. For more information, see “Requirements Link Storage”. The artifact can be any
file that contains a linkable item, such as a Simulink model or a Simulink Test file.

Domain — Link set custom link type
character vector

The custom link type of the links in the link set. For more information, see “Custom Link Types”.
Example: linktype_rmi_excel, linktype_rmi_doors

Revision — Link set revision number
scalar

Link set revision number, specified as a scalar.

Dirty — Unsaved changes indicator
0 | 1

Indicates if the link set has unsaved changes. 0 for no unsaved changes and 1 for unsaved changes.

Description — Link set description
character vector

Link set description text, specified as a character vector.

CustomAttributeNames — Custom attributes associated with the link set
cell array of character vectors

Link set custom attribute names, specified as a cell array of character vectors.

2 Classes

2-62

Methods
addAttribute Add custom attribute to link set
createTextRange Create line ranges
deleteAttribute Delete custom attribute from link set
exportToVersion Export link set to previous MATLAB version
find Find links in link set with matching attribute values
getLinks Get links from link set
getRegisteredReqSets Get requirement sets registered in link set
getTextRange Get line ranges
getTextRanges Get lines ranges that span multiple lines
importProfile Assign profile to ink set
inspectAttribute Get information about link set custom attribute
profiles Get profiles assigned to link set
redirectLinksToImportedReqs Redirect link destination from external document to imported

requirement set
removeProfile Remove profile from link set
save Save link set
sources Get link sources
updateAttribute Update information for link set custom attribute
updateBacklinks Synchronize external navigation links
updateDocUri Update link destination for direct links
updateRegisteredReqSets Update requirement sets registered to link set

Examples
Find, Load, and Edit a Link Set

This example shows how to find, load, and edit a link set.

Find a loaded link set by using the name.

myLinkSet1 = slreq.find("Type","LinkSet","Name","Project_req")

myLinkSet1 =

 LinkSet with properties:

 Description: ''
 Filename: 'Project_req.slmx'
 Artifact: 'Project_req.slreqx'
 Domain: 'linktype_rmi_slreq'
 Revision: 2
 Dirty: 0

Load a link set associated with a Simulink model called fuelsys.

myLinkSet2 = slreq.load("fuelsys.slx")

 slreq.LinkSet class

2-63

myLinkSet2 =

 LinkSet with properties:

 Description: ''
 Filename: 'C:\MATLAB\My_Files\fuelsys_linkset.slmx'
 Artifact: 'D:\Work\Design_Specs\fuelsys.slx'
 Domain: 'linktype_rmi_simulink'
 Revision: 2
 Dirty: 0

Set the link set description.

myLinkSet2.Description = "Link set for the fuel system"

myLinkSet2 =

 LinkSet with properties:

 Description: 'Link set for the fuel system'
 Filename: 'C:\MATLAB\My_Files\fuelsys_linkset.slmx'
 Artifact: 'D:\Work\Design_Specs\fuelsys.slx'
 Domain: 'linktype_rmi_simulink'
 Revision: 2
 Dirty: 1

Version History
Introduced in R2018a

See Also
slreq.Link | slreq.ReqSet | slreq.Reference | slreq.Requirement

2 Classes

2-64

slreq.Reference class
Package: slreq

Work with external requirement proxy objects

Description
Instances of slreq.Reference are proxies for external requirement objects that a third-party
external application manages and maintains. Referenced requirement objects are read-only but can
be synchronized from an external application and can exist only within a requirement set.

Creation
ref = find(rs, 'Type', 'Reference', 'PropertyName', PropertyValue) finds and
returns a referenced requirement or a set of referenced requirements ref in the requirement set rs
specified by the properties matching PropertyName and PropertyValue.

ref = add(rs, 'Artifact', FileName, 'PropertyName', PropertyValue) adds a
referenced requirement ref to a requirement set rs which references requirements from the
external document specified by FileName with properties and custom attributes specified by
PropertyName and PropertyValue.

Input Arguments

rs — Requirement set object
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

FileName — Container identifier
character vector

File name for a top-level container identifier, such as a Microsoft Office document name or an IBM
Rational DOORS Module unique ID.

Output Arguments

ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as an slreq.Reference object.

Properties
Id — Referenced requirement ID
character vector

Referenced requirement ID, returned as a character vector.

 slreq.Reference class

2-65

Attributes:

GetAccess public
SetAccess private

CustomId — Referenced requirement Custom ID
character vector

Referenced requirement custom ID, returned as a character vector.

Attributes:

GetAccess public
SetAccess private

Artifact — Container identifier
character vector

Top-level container identifier, like a Microsoft Office document name or an IBM Rational DOORS
Module unique ID.

Attributes:

GetAccess public
SetAccess private

ArtifactId — Requirement identifier
character vector

Unique requirement identifier in the source requirements document. For requirements imported from
IBM Rational DOORS, the ArtifactId is the Numeric Object Id. For requirements imported from
Microsoft Word, the bookmark names are used as the ArtifactId.

Attributes:

GetAccess public
SetAccess private

Domain — Requirements document custom link type
character vector

The custom link type of the requirements document. For more information, see “Custom Link Types”.
Example: 'linktype_rmi_doors', 'linktype_rmi_excel'

Attributes:

GetAccess public
SetAccess private

UpdatedOn — Date and time referenced requirement was last updated
datetime

The date and time the referenced requirement was last synchronized with the external document,
specified as a datetime value. The software automatically populates this property.

2 Classes

2-66

Attributes:

GetAccess public
SetAccess private

CreatedOn — Date referenced requirement was created
datetime

The date the referenced requirement was created, specified as a datetime value. The software
automatically populates this property.

Attributes:

GetAccess public
SetAccess private

CreatedBy — Referenced requirement creator
character vector

The name of the individual or organization who created the referenced requirement.

Attributes:

GetAccess public
SetAccess private

ModifiedBy — Referenced requirement modifier
character vector

The name of the individual or organization who last modified the referenced requirement.

Attributes:

GetAccess public
SetAccess private

IsLocked — Referenced requirement lock indicator
1 (default) | 0

Indicates if the referenced requirement is locked. 1 for locked and 0 for unlocked.

Attributes:

GetAccess public
SetAccess private

Summary — Referenced requirement summary
character vector

Referenced requirement summary text, returned as a character vector.

Attributes:

GetAccess public
SetAccess public

Description — Referenced requirement description
character vector

 slreq.Reference class

2-67

Referenced requirement description text, returned as a multiline character vector.

Attributes:

GetAccess public
SetAccess public

Rationale — Referenced requirement rationale
character vector

Referenced requirement rationale text, returned as a multiline character vector.

Attributes:

GetAccess public
SetAccess public

Keywords — Referenced requirement keywords
character array

Referenced requirement keywords, specified as a character array.

Attributes:

GetAccess public
SetAccess public

Type — Referenced requirement type enumeration
'Functional' | 'Informational' | 'Container' | string scalar | character vector

Referenced requirement type enumeration, specified as 'Functional', 'Informational',
'Container', or a string scalar or character vector that specifies a custom requirement type. For
more information, see “Requirement Types”.

Attributes:

GetAccess public
SetAccess public

IndexEnabled — Referenced requirement index enabled indicator
1 (default) | 0

Indicates if the referenced requirement index is enabled (1) or disabled (0), returned as a 1 or 0 of
data type logical. Disabling the index omits the referenced requirement from the numbered
hierarchy list.

Attributes:

GetAccess public
SetAccess public

IndexNumber — User-specified referenced requirement index value
empty double array (default) | int32 array

User-specified referenced requirement index value, returned as an empty double array or an int32
array. If empty, Requirements Toolbox calculates the Index value. Otherwise, Requirements Toolbox
sets the Index property to the specified integer value.

2 Classes

2-68

Attributes:

GetAccess public
SetAccess public

SID — Referenced requirement Session Independent Identifier
character vector

The Session Independent Identifier corresponding to the referenced requirement.

Attributes:

GetAccess public
SetAccess private

FileRevision — Referenced requirement revision number
scalar

Referenced requirement revision number, specified as a scalar.

Attributes:

GetAccess public
SetAccess private

ModifiedOn — Date referenced requirement was modified
datetime

The date the referenced requirement was last modified, specified as a datetime value. The software
automatically populates this property.

Attributes:

GetAccess public
SetAccess private

Dirty — Unsaved changes indicator
0 | 1

Indicates if the requirement has unsaved changes (1) or does not have unsaved changes (0).

Attributes:

GetAccess public
SetAccess private

Comments — Referenced requirement comments
structure array

The comments that are attached with the referenced requirement, returned as a structure.

Attributes:

GetAccess public
SetAccess private

Index — Referenced requirement index
character array

 slreq.Reference class

2-69

The index of the referenced requirement, specified as a character array.

Attributes:

GetAccess public
SetAccess private

Methods
add Add child referenced requirement
addComment Add comments to referenced requirements
children Find children references
find Find children of parent referenced requirements
getAttribute Get referenced requirement custom attributes
getImplementationStatus Query referenced requirement implementation status summary
getPostImportFcn Get contents of PostImportFcn callback
getPreImportFcn Get registered PreImportFcn callback script
getVerificationStatus Query referenced requirement verification status summary
hasNewUpdate Check if import node has available update
inLinks Get incoming links for referenced requirements
isFilteredIn Check filtered referenced requirements
isJustifiedFor Check if referenced requirement is justified
justifyImplementation Justify referenced requirements for implementation
justifyVerification Justify referenced requirements for verification
moveDown Move referenced requirement down in hierarchy
moveUp Move referenced requirement up in hierarchy
navigateToExternalArtifact Navigate from imported referenced requirement to original requirement
parent Find parent item of referenced requirement
outLinks Get outgoing links for referenced requirements
remove Remove referenced requirements
reqSet Return parent requirement set
setAttribute Set referenced requirement custom attributes
setParent Set parent of referenced requirement in PostImportFcn callback
setPostImportFcn Assign PostImportFcn callback script
setPreImportFcn Assign PreImportFcn callback script
unlock Unlock referenced requirements
unlockAll Unlock all child referenced requirements for editing
updateFromDocument Update referenced requirements from external requirements document

2 Classes

2-70

Examples
Find a Referenced Requirement

This example shows how to find a referenced requirement in a requirement set.

Load a requirement set called myReqSet.

rs = slreq.load("myReqSet");

Find a requirement with ID 9 in the requirement set.

req = find(rs,"Type","Reference","ID","9");

ref =

 Reference with properties:

 Keywords: [0×0 char]
 Artifact: 'Req_doc.docx'
 Id: 'R9'
 Summary: 'System overview'
 Description: ''
 SID: 3
 Domain: 'linktype_rmi_word'
 SynchronizedOn: 25-Jul-2017 11:34:02

Version History
Introduced in R2018a

See Also
slreq.ReqSet | slreq.Requirement | slreq.import | slreq.Link | slreq.LinkSet

Topics
“Import and Edit Requirements from a Microsoft Word Document”

 slreq.Reference class

2-71

slreq.ReqSet class
Package: slreq

Work with requirement sets

Description
Instances of slreq.ReqSet are requirement set objects.

Creation
newReqSet = slreq.new(reqSetName) creates a requirement set named reqSetName in the
current working folder.

newReqSet = slreq.new(reqSetPath) creates a requirement set on the specified path.

Input Arguments

reqSetName — Requirement set name
character vector

Name of the requirement set, specified as a character vector.
Example: 'Design Requirements'

reqSetPath — Requirement set file name and path
character vector

The file name and path of the requirement set, specified as a character vector.
Example: 'C:\MATLAB\myReqSet.slreqx'

Output Arguments

newReqSet — Requirement set
slreq.ReqSet object

An instance of the slreq.ReqSet object.

Properties
Name — Requirement set name
character vector

Name of the requirement set, specified as a character vector.

Filename — Requirement set file path
character vector

The file path of the requirement set, specified as a character vector.

2 Classes

2-72

Revision — Requirement set revision number
scalar

Requirement set revision number, specified as a scalar.

CreatedBy — Requirement set creator
character vector

The name of the individual or organization who created the requirement set.

CreatedOn — Date requirement set was created
datetime value

The date the requirement set was created, specified as a datetime value. The software automatically
populates this property.

ModifiedBy — Requirement set modifier
character vector

The name of the individual or organization who last modified the requirement set.

ModifiedOn — Date requirement set was modified
datetime value

The date the requirement set was last modified, specified as a datetime value. The software
automatically populates this property.

Description — Requirement set description
character vector

Requirement set description text, specified as a character vector.

Dirty — Unsaved changes indicator
0 | 1

Indicates if the requirement set has unsaved changes. 0 for no unsaved changes, and 1 for unsaved
changes.

CustomAttributeNames — Custom attributes associated with the requirement set
cell array of character vectors

Requirement set custom attribute names, specified as a cell array of character vectors.

 slreq.ReqSet class

2-73

Methods
add Add requirements to requirement set
addAttribute Add custom attribute to requirement set
addJustification Add justifications to requirement set
children Get top-level items in requirement set
close Close a requirement set
createReferences Create read-only references to requirement items in third-party

documents
discard Close requirement set without saving
deleteAttribute Delete custom attribute from requirement set
explore Open requirement set in Requirements Editor
exportToVersion Export requirement set to previous MATLAB version
find Find requirements in requirement set that have matching attribute

values
getImplementationStatus Query requirement set implementation status summary
getPostLoadFcn Get contents of PostLoadFcn callback
getPreSaveFcn Get contents of PreSaveFcn callback
getVerificationStatus Query requirement set verification status summary
importFromDocument Import editable requirements from external documents
importProfile Assign profile to requirement set
inspectAttribute Get information about requirement set custom attribute
profiles Get profiles assigned to requirement sets
removeProfile Remove profile from requirement set
runTests Run test cases linked to the requirement set
save Save a requirement set
setPostLoadFcn Assign PostLoadFcn callback script
setPreSaveFcn Assign PreSaveFcn callback script
updateAttribute Update information for requirement set custom attribute
updateImplementationStatus Update requirement set implementation status summary
updateReferences Update referenced requirements in requirement set
updateSrcArtifactUri Update document resource identifier of imported requirements
updateSrcFileLocation Update document location of imported requirements
updateVerificationStatus Update requirement set verification status summary

Examples
Create, Save, and Open a Requirement Set Object

This example shows how to create, save, and open a requirement set object.

Create a new requirement set called Design_Requirements.

2 Classes

2-74

rs = slreq.new("Design_Requirements");

Save and close the requirement set.

save(rs);
close(rs);

Open the requirement set in the Requirements Editor.

slreq.open(rs);

Version History
Introduced in R2018a

See Also
slreq.Requirement | slreq.Reference | slreq.LinkSet | slreq.Link

 slreq.ReqSet class

2-75

slreq.Requirement class
Package: slreq

Work with requirement objects

Description
Instances of slreq.Requirement are Requirement objects that you manage solely inside
Requirements Toolbox and that do not have a persistent association with artifacts managed by
external applications. Requirement objects can exist only within a requirement set.

Creation
req = find(rs, 'PropertyName', PropertyValue) finds and returns a requirement req in
the requirement set rs with additional requirement properties specified by PropertyName and
PropertyValue.

req = add(rs, 'PropertyName', PropertyValue) adds a requirement req to the requirement
set rs with additional requirement properties specified by PropertyName and PropertyValue.

Input Arguments

rs — Requirement set object
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Output Arguments

req — Requirement object
slreq.Requirement object

Handle to a requirement, returned as an slreq.Requirement object.

Properties
Type — Requirement type
"Functional" | "Informational" | "Container" | string scalar | character vector

Requirement type, specified as "Functional", "Informational", "Container", or a string
scalar or character vector that specifies a custom requirement type or stereotype. For more
information, see “Requirement Types”.

Attributes:

GetAccess public
SetAccess public

Id — Requirement custom ID
string scalar | character vector

2 Classes

2-76

Custom ID of the requirement, specified as a string scalar or character vector. You cannot use spaces
and '#' in custom IDs.

Attributes:

GetAccess public
SetAccess public

Summary — Requirement summary
string scalar | character vector

Requirement summary text, specified as a string scalar or character vector.

Attributes:

GetAccess public
SetAccess public

Description — Requirement description
string scalar | character vector

Requirement description text, specified as a string scalar or character vector.

Attributes:

GetAccess public
SetAccess public

Keywords — Requirement keywords
string array | cell array

Requirement keywords, specified as a string array or cell array of character vectors.

Attributes:

GetAccess public
SetAccess public

Rationale — Requirement rationale
string scalar | character vector

Requirement rationale text, specified as a string scalar or character vector.

Attributes:

GetAccess public
SetAccess public

CreatedOn — Date requirement was created
datetime value

The date on which the requirement was created, specified as a datetime value. The software
populates this property.

 slreq.Requirement class

2-77

Attributes:

GetAccess public
SetAccess private

CreatedBy — Requirement creator
character vector

The name of the individual or organization who created the requirement.

Attributes:

GetAccess public
SetAccess private

ModifiedBy — Requirement modifier
character vector

The name of the individual or organization who last modified the requirement.

Attributes:

GetAccess public
SetAccess private

IndexEnabled — Index enabled indicator
1 (default) | 0

Indicates whether the index is enabled (1) or disabled (0), returned as a 1 or 0 of data type logical.
If you disable the index, Requirements Toolbox does not count this requirement when it creates the
numbered hierarchy list. However, the requirement remains in the same place in the hierarchy.

Attributes:

GetAccess public
SetAccess public

IndexNumber — User-specified index value
empty double array (default) | int32 array

User-specified index value, returned as an empty double array or an int32 array. If empty,
Requirements Toolbox calculates the Index value. Otherwise, Requirements Toolbox sets the Index
property to the specified integer value.

Attributes:

GetAccess public
SetAccess public

SID — Requirement Session Independent Identifier
character vector

The Session Independent Identifier corresponding to the requirement, specified as a character vector.

2 Classes

2-78

Attributes:

GetAccess public
SetAccess private

FileRevision — Requirement revision number
scalar

Requirement revision number, specified as a scalar.

Attributes:

GetAccess public
SetAccess private

ModifiedOn — Date requirement was modified
datetime value

The date on which the requirement was last modified, specified as a datetime value. The software
populates this property.

Attributes:

GetAccess public
SetAccess private

Dirty — Unsaved changes indicator
0 | 1

Indicates if the requirement has unsaved changes (1) or does not have unsaved changes (0).

Attributes:

GetAccess public
SetAccess private

Comments — Requirement comments
structure array

The comments that are attached with the requirement, specified as a structure.

Attributes:

GetAccess public
SetAccess private

Index — Requirement index
character array

The index of the requirement, specified as a character array.

Attributes:

GetAccess public
SetAccess private

 slreq.Requirement class

2-79

Methods
add Add child requirement
addComment Add comments to requirements
children Find child requirements of a requirement
copy Copy and paste requirement
demote Demote requirements
find Find children of parent requirements
getAttribute Get requirement property values
getImplementationStatus Query requirement implementation status summary
getVerificationStatus Query requirement verification status summary
inLinks Get incoming links for requirements
isFilteredIn Check filtered requirements
isJustifiedFor Check if requirement is justified
justifyImplementation Justify requirements for implementation
justifyVerification Justify requirements for verification
move Move requirement in hierarchy
moveDown Move requirement down in hierarchy
moveUp Move requirement up in hierarchy
outLinks Get outgoing links for requirements
parent Find parent item of requirement
promote Promote requirements
remove Remove requirement from requirement set
reqSet Return parent requirement set
setAttribute Set requirement property values

Examples

Find a Requirement in a Requirement Set

This example shows how to find a requirement in a requirement set.

Load a requirement set called myReqSet.

rs = slreq.load("myReqSet");

Find a requirement with ID 77 in the requirement set.

req = find(rs,"Type","Requirement","ID","77");

req =

 Requirement with properties:

 Id: '77'

2 Classes

2-80

 Summary: 'Test Spec'
 Keywords: [0×0 char]
 Description: ''
 Rationale: ''
 SID: 80
 CreatedBy: 'John Doe'
 CreatedOn: 05-Oct-2007 16:09:38
 ModifiedBy: 'Jane Doe'
 ModifiedOn: 21-Dec-2016 11:10:05
 Comments: [0×0 struct]

Version History
Introduced in R2018a

See Also
slreq.ReqSet | slreq.Reference | slreq.Link | slreq.LinkSet

 slreq.Requirement class

2-81

slreq.callback.CustomImportOptions class
Package: slreq.callback

Custom import options

Description
Use objects of the slreq.callback.CustomImportOptions class to adjust the options to use
when import requirements. When you import requirements from a custom third-party document,
slreq.getCurrentImportOptions generates an slreq.callback.CustomImportOptions
object that you can use to adjust the options to use during import. You can only access this object in
the PreImportFcn callback.

The slreq.callback.CustomImportOptions class is a handle class.

Creation
options = slreq.getCurrentImportOptions returns an
slreq.callback.CustomImportOptions object if you import requirements from a custom third-
party document.

Properties
Rationale — External attribute mapped to Rationale
string scalar | character vector

External attribute mapped to the “Rationale” on page 2-0 property, specified as a string
scalar or character vector.
Example: myImportOptions.Rationale = "Requirement rationale";
Attributes:

GetAccess public
SetAccess public

Keywords — External attribute mapped to Keywords
string scalar | character vector

External attribute mapped to the “Keywords” on page 2-0 property, specified as a string scalar
or character vector.
Example: myImportOptions.Keywords = "Requirement keywords";
Attributes:

GetAccess public
SetAccess public

Attributes — External attributes to import
cell array

2 Classes

2-82

External attributes to import as custom attributes, specified as a cell array.
Example: myImportOptions.Attributes = {'Priority','Status'};

Attributes:

GetAccess public
SetAccess public

Filter — Filter condition to apply during import
string scalar | character vector

Filter condition to apply during import, specified as a string scalar or a character vector.
Example: myImportOptions.Filter = "AttributeName==Value";

Attributes:

GetAccess public
SetAccess public

AsReference — Option to import as references
1 (default) | 0

Option to import as slreq.Reference objects, specified as a 1 or 0 of data type logical. If 0,
requirements import as slreq.Requirement objects.

Attributes:

GetAccess public
SetAccess public

RichText — Option to import with rich text
0 (default) | 1

Option to import requirements with rich text, specified as a 1 or 0 of data type logical.

Attributes:

GetAccess public
SetAccess public

DocUri — Resource identifier for requirements document
string scalar | character vector

Resource identifier for external requirements document, specified as a string scalar or character
vector.

Attributes:

GetAccess public
SetAccess public

DocType — Requirements document custom link type
string scalar | character vector

Requirements document custom link type, returned as a string scalar or character vector.

 slreq.callback.CustomImportOptions class

2-83

Attributes:

GetAccess public
SetAccess private

ReqSet — Requirement set name
character vector

Requirement set name, returned as a character vector.

Attributes:

GetAccess public
SetAccess private

PreImportFcn — Contents of PreImportFcn callback
string scalar | character vector

Contents of the PreImportFcn callback for the current Import node, specified as a string scalar or a
character vector.

Attributes:

GetAccess public
SetAccess public

PostImportFcn — Contents of PostImportFcn callback
string scalar | character vector

Contents of the PostImportFcn callback for the current Import node, specified as a string scalar or
a character vector.

Attributes:

GetAccess public
SetAccess public

Version History
Introduced in R2022a

See Also
slreq.getCurrentImportOptions | setPreImportFcn | getPreImportFcn

Topics
“Use Callbacks to Customize Requirement Import Behavior”

2 Classes

2-84

slreq.callback.DOORSImportOptions class
Package: slreq.callback

IBM Rational DOORS import options

Description
Use objects of the slreq.callback.DOORSImportOptions class to adjust the options to use when
import requirements. When you import requirements from IBM Rational DOORS,
slreq.getCurrentImportOptions generates an slreq.callback.DOORSImportOptions
object that you can use to adjust the options to use when you import requirements. You can only
access this object in the PreImportFcn callback.

The slreq.callback.DOORSImportOptions class is a handle class.

Creation
options = slreq.getCurrentImportOptions returns an
slreq.callback.DOORSImportOptions object if you are importing requirements from IBM
Rational DOORS.

Properties
Rationale — External attribute mapped to Rationale
string scalar | character vector

External attribute mapped to the “Rationale” on page 2-0 property, specified as a string
scalar or character vector.
Example: myImportOptions.Rationale = "Requirement rationale";
Attributes:

GetAccess public
SetAccess public

Keywords — External attribute mapped to Keywords
string scalar | character vector

External attribute mapped to the “Keywords” on page 2-0 property, specified as a string scalar
or character vector.
Example: myImportOptions.Keywords = "Requirement keywords";
Attributes:

GetAccess public
SetAccess public

Attributes — External attributes to import
cell array

 slreq.callback.DOORSImportOptions class

2-85

External attributes to import as custom attributes, specified as a cell array.
Example: myImportOptions.Attributes = {'Priority','Status'};

Attributes:

GetAccess public
SetAccess public

Filter — Filter condition to apply during import
string scalar | character vector

Filter condition to apply during import, specified as a string scalar or a character vector.
Example: myImportOptions.Filter = "AttributeName==Value";

Attributes:

GetAccess public
SetAccess public

AsReference — Option to import as references
1 (default) | 0

Option to import as slreq.Reference objects, specified as a 1 or 0 of data type logical. If 0,
requirements import as slreq.Requirement objects.

Attributes:

GetAccess public
SetAccess public

RichText — Option to import with rich text
0 (default) | 1

Option to import requirements with rich text, specified as a 1 or 0 of data type logical.

Attributes:

GetAccess public
SetAccess public

DocUri — Resource identifier for requirements document
string scalar | character vector

Resource identifier for external requirements document, specified as a string scalar or character
vector.

Attributes:

GetAccess public
SetAccess public

DocType — Requirements document custom link type
string scalar | character vector

Requirements document custom link type, returned as a string scalar or character vector.

2 Classes

2-86

Attributes:

GetAccess public
SetAccess private

ReqSet — Requirement set name
character vector

Requirement set name, returned as a character vector.

Attributes:

GetAccess public
SetAccess private

PreImportFcn — Contents of PreImportFcn callback
string scalar | character vector

Contents of the PreImportFcn callback for the current Import node, specified as a string scalar or a
character vector.

Attributes:

GetAccess public
SetAccess public

PostImportFcn — Contents of PostImportFcn callback
string scalar | character vector

Contents of the PostImportFcn callback for the current Import node, specified as a string scalar or
a character vector.

Attributes:

GetAccess public
SetAccess public

Version History
Introduced in R2022a

See Also
slreq.getCurrentImportOptions | setPreImportFcn | getPreImportFcn

Topics
“Use Callbacks to Customize Requirement Import Behavior”

 slreq.callback.DOORSImportOptions class

2-87

slreq.callback.MSExcelImportOptions class
Package: slreq.callback

Microsoft Excel import options

Description
Use objects of the slreq.callback.MSExcelImportOptions class to adjust the options to use
when import requirements. When you import requirements from a Microsoft Excel file,
slreq.getCurrentImportOptions generates an slreq.callback.MSExcelImportOptions
object that you can use to adjust the options to use when you import requirements. You can only
access this object in the PreImportFcn callback.

The slreq.callback.MSExcelImportOptions class is a handle class.

Creation
options = slreq.getCurrentImportOptions returns an
slreq.callback.MSExcelImportOptions object if you are importing requirements from a
Microsoft Excel file.

Properties
Worksheet — Worksheet name
string scalar | character vector

Name ofMicrosoft Excel worksheet, specified as a string scalar or a character vector.

Attributes:

GetAccess public
SetAccess public

SubDocPrefix — Option to prepend sheet name in custom ID
0 (default) | 1

Option to prepend the sheet name in the “CustomId” on page 2-0 property of the imported
requirements, specified as a 1 or 0 of data type logical.

Tip If requirements from multiple sheets import with the same custom ID, set this property to 1 to
generate unique custom IDs.

Attributes:

GetAccess public
SetAccess public

2 Classes

2-88

Rows — Range of rows
double array

Range of rows to import from the Microsoft Excel spreadsheet, specified as a double array.
Example: myImportOptions.Rows = [3 35];

Attributes:

GetAccess public
SetAccess public

Columns — Range of columns
double array

Range of columns to import from the Microsoft Excel spreadsheet, specified as a double array.
Example: myImportOptions.Columns = [1 6];

Attributes:

GetAccess public
SetAccess public

Attributes — External attributes to import
cell array

External attributes to import as custom attributes, specified as a cell array.

The length of this cell array must match the number of columns specified by the
“AttributeColumn” on page 2-0 property.
Example: myImportOptions.Attributes = {'Test Status','Test Procedure'};

Attributes:

GetAccess public
SetAccess public

IdColumn — Column to map to the Id property
double

Column in the Microsoft Excel spreadsheet to map to the “Id” on page 2-0 property of the
requirements in your requirement set, specified as a double.
Example: myImportOptions.IdColumn = 1;

Attributes:

GetAccess public
SetAccess public

SummaryColumn — Column to map to the Summary property
double

Column in the Microsoft Excel spreadsheet to map to the “Summary” on page 2-0 property of
the requirements in your requirement set, specified as a double.
Example: myImportOptions.SummaryColumn = 2;

 slreq.callback.MSExcelImportOptions class

2-89

Attributes:

GetAccess public
SetAccess public

DescriptionColumn — Column to map to the Description property
double

Column in the Microsoft Excel spreadsheet to map to the “Description” on page 2-0
property of the requirements in your requirement set, specified as a double.
Example: myImportOptions.DescriptionColumn = 3;
Attributes:

GetAccess public
SetAccess public

RationaleColumn — Column to map to the Rationale property
double

Column in the Microsoft Excel spreadsheet to map to the “Rationale” on page 2-0 property
of the requirements in your requirement set, specified as a double.
Example: myImportOptions.RationaleColumn = 4;
Attributes:

GetAccess public
SetAccess public

KeywordsColumn — Column to map to the Keywords property
double

Column in the Microsoft Excel spreadsheet to map to the “Keywords” on page 2-0 property of
the requirements in your requirement set, specified as a double.
Example: myImportOptions.KeywordsColumn = 5;
Attributes:

GetAccess public
SetAccess public

AttributeColumn — Columns to map to custom attributes
double array

Columns in the Microsoft Excel spreadsheet to map as custom attributes of the requirements in your
requirement set, specified as a double array.
Example: myImportOptions.AttributeColumn = [4 6];
Attributes:

GetAccess public
SetAccess public

USDM — USDM format
string scalar | character vector

2 Classes

2-90

Import from Microsoft Excel spreadsheets specified in the Universal Specification Describing Manner
(USDM) standard format. Specify values as string scalars or character vectors with the ID prefix
optionally followed by a separator character.
Example: myImportOptions.USDM = "RQ -" will match entries with IDs similar to RQ01, RQ01-2,
RQ01-2-1 etc.

Attributes:

GetAccess public
SetAccess public

Bookmarks — Option to import requirements using bookmarks
0 (default) | 1

Option to import requirements content using user-defined bookmarks, specified as a 1 or 0 of data
type logical.

By default, Requirements Toolbox sets the value to 1 for Microsoft Word documents and 0 for
Microsoft Excel spreadsheets.

Attributes:

GetAccess public
SetAccess public

Match — Regular expression pattern
string scalar | character vector

Regular expression pattern, specified as a string scalar or character vector. Use this expression to
search for matches in Microsoft Office documents.

Attributes:

GetAccess public
SetAccess public

AsReference — Option to import as references
1 (default) | 0

Option to import as slreq.Reference objects, specified as a 1 or 0 of data type logical. If 0,
requirements import as slreq.Requirement objects.

Attributes:

GetAccess public
SetAccess public

RichText — Option to import with rich text
0 (default) | 1

Option to import requirements with rich text, specified as a 1 or 0 of data type logical.

Attributes:

GetAccess public
SetAccess public

 slreq.callback.MSExcelImportOptions class

2-91

DocUri — Resource identifier for requirements document
string scalar | character vector

Resource identifier for external requirements document, specified as a string scalar or character
vector.

Attributes:

GetAccess public
SetAccess public

DocType — Requirements document custom link type
string scalar | character vector

Requirements document custom link type, returned as a string scalar or character vector.

Attributes:

GetAccess public
SetAccess private

ReqSet — Requirement set name
character vector

Requirement set name, returned as a character vector.

Attributes:

GetAccess public
SetAccess private

PreImportFcn — Contents of PreImportFcn callback
string scalar | character vector

Contents of the PreImportFcn callback for the current Import node, specified as a string scalar or a
character vector.

Attributes:

GetAccess public
SetAccess public

PostImportFcn — Contents of PostImportFcn callback
string scalar | character vector

Contents of the PostImportFcn callback for the current Import node, specified as a string scalar or
a character vector.

Attributes:

GetAccess public
SetAccess public

Examples

2 Classes

2-92

Customize Excel Import Options

This example shows how to customize Microsoft® Excel® import options by using the
PreImportFcn callback.

Use slreq.import to import the Excel file ExampleRequirements.xlsx into Requirements
Toolbox™. Name the imported requirement set myReqSet and register the script excelPreImport
as the PreImportFcn callback. Return a handle to the requirement set.

[~,~,rs] = slreq.import("ExampleRequirements.xlsx", ...
 ReqSet="myReqSet",preImportFcn="excelPreImport");

The script excelPreImport uses slreq.getCurrentImportOptions to get the import options,
then maps columns 2, 4, and 5 to the built-in slreq.Reference properties ID, Summary, and
Description. The script also maps columns 3, 6, and 7 to custom attributes orig_Type, Remark,
and Status.

type excelPreImport.m

importOptions = slreq.getCurrentImportOptions;
importOptions.IdColumn = 2;
importOptions.SummaryColumn = 4;
importOptions.DescriptionColumn = 5;
importOptions.Attributes = {'orig_type','Remark','Status'};
importOptions.AttributeColumn = [3 6 7];

Return the importOptions object.

importOptions

importOptions =
 MSExcelImportOptions with properties:

 Worksheet: []
 SubDocPrefix: 0
 Rows: []
 Columns: ''
 Attributes: {'orig_type' 'Remark' 'Status'}
 IdColumn: 2
 SummaryColumn: 4
 DescriptionColumn: 5
 RationaleColumn: []
 KeywordsColumn: []
 AttributeColumn: [3 6 7]
 CreatedByColumn: []
 ModifiedByColumn: []
 USDM: ''
 Bookmarks: 0
 Match: []
 AsReference: 1
 RichText: 0
 DocUri: 'C:\Users\jdoe\MATLAB\Examples\slrequirements-ex00521778\ExampleRequirements.xlsx'
 DocType: 'linktype_rmi_excel'
 ReqSet: 'myReqSet'
 PreImportFcn: 'excelPreImport'
 PostImportFcn: ''

 slreq.callback.MSExcelImportOptions class

2-93

Version History
Introduced in R2022a

See Also
slreq.getCurrentImportOptions | setPreImportFcn | getPreImportFcn

Topics
“Use Callbacks to Customize Requirement Import Behavior”

2 Classes

2-94

slreq.callback.MSWordImportOptions class
Package: slreq.callback

Microsoft Word import options

Description
Use objects of the slreq.callback.MSWordImportOptions class to adjust the options to use
when import requirements. When you import requirements from a Microsoft Word file,
slreq.getCurrentImportOptions generates an slreq.callback.MSWordImportOptions
object that you can use to adjust the options to use when you import requirements. You can only
access this object in the PreImportFcn callback.

The slreq.callback.MSWordImportOptions class is a handle class.

Creation
options = slreq.getCurrentImportOptions returns an
slreq.callback.MSWordImportOptions object if you are importing requirements from a
Microsoft Word file.

Properties
IgnoreOutlineNumbers — Option to ignore outline numbers
0 (default) | 1

Option to ignore outline numbers in section headers, specified as a 1 or 0 of data type logical.

Attributes:

GetAccess public
SetAccess public

Bookmarks — Option to import requirements using bookmarks
0 (default) | 1

Option to import requirements content using user-defined bookmarks, specified as a 1 or 0 of data
type logical.

By default, Requirements Toolbox sets the value to 1 for Microsoft Word documents and 0 for
Microsoft Excel spreadsheets.

Attributes:

GetAccess public
SetAccess public

Match — Regular expression pattern
string scalar | character vector

 slreq.callback.MSWordImportOptions class

2-95

Regular expression pattern, specified as a string scalar or character vector. Use this expression to
search for matches in Microsoft Office documents.

Attributes:

GetAccess public
SetAccess public

AsReference — Option to import as references
1 (default) | 0

Option to import as slreq.Reference objects, specified as a 1 or 0 of data type logical. If 0,
requirements import as slreq.Requirement objects.

Attributes:

GetAccess public
SetAccess public

RichText — Option to import with rich text
0 (default) | 1

Option to import requirements with rich text, specified as a 1 or 0 of data type logical.

Attributes:

GetAccess public
SetAccess public

DocUri — Resource identifier for requirements document
string scalar | character vector

Resource identifier for external requirements document, specified as a string scalar or character
vector.

Attributes:

GetAccess public
SetAccess public

DocType — Requirements document custom link type
string scalar | character vector

Requirements document custom link type, returned as a string scalar or character vector.

Attributes:

GetAccess public
SetAccess private

ReqSet — Requirement set name
character vector

Requirement set name, returned as a character vector.

2 Classes

2-96

Attributes:

GetAccess public
SetAccess private

PreImportFcn — Contents of PreImportFcn callback
string scalar | character vector

Contents of the PreImportFcn callback for the current Import node, specified as a string scalar or a
character vector.

Attributes:

GetAccess public
SetAccess public

PostImportFcn — Contents of PostImportFcn callback
string scalar | character vector

Contents of the PostImportFcn callback for the current Import node, specified as a string scalar or
a character vector.

Attributes:

GetAccess public
SetAccess public

Examples

Customize Word Import Options

This example shows how to customize Microsoft® Word import options by using the PreImportFcn
callback.

Use slreq.import to import the Word document
Reject_Double_Button_Press_Model_Requirements.docx into Requirements Toolbox™.
Name the imported requirement set myReqSet and register the script wordPreImport as the
PreImportFcn callback to use during import. Return a handle to the requirement set.

[~,~,rs] = slreq.import("Reject_Double_Button_Press_Model_Requirements.docx", ...
 ReqSet="myReqSet",preImportFcn="wordPreImport");

The script wordPreImport uses slreq.getCurrentImportOptions to get the import options,
then sets the Bookmark property to 1 to use bookmarks to identify items and serve as custom IDs.

type wordPreImport.m

importOptions = slreq.getCurrentImportOptions;
importOptions.Bookmarks = 1;

Return the importOptions object.

importOptions

importOptions =
 MSWordImportOptions with properties:

 slreq.callback.MSWordImportOptions class

2-97

 IgnoreOutlineNumbers: 0
 Bookmarks: 1
 Match: []
 AsReference: 1
 RichText: 1
 DocUri: 'C:\Users\jdoe\MATLAB\Examples\slrequirements-ex48179482\Reject_Double_Button_Press_Model_Requirements.docx'
 DocType: 'linktype_rmi_word'
 ReqSet: 'myReqSet'
 PreImportFcn: 'wordPreImport'
 PostImportFcn: ''

Version History
Introduced in R2022a

See Also
slreq.getCurrentImportOptions | setPreImportFcn | getPreImportFcn

Topics
“Use Callbacks to Customize Requirement Import Behavior”

2 Classes

2-98

slreq.callback.ReqIFImportOptions class
Package: slreq.callback

ReqIF import options

Description
Use objects of the slreq.callback.ReqIFImportOptions class to adjust the options to use when
import requirements. When you import requirements from a ReqIF file,
slreq.getCurrentImportOptions generates an slreq.callback.ReqIFImportOptions
object that you can use to adjust the options to use during import. You can only access this object in
the PreImportFcn callback.

The slreq.callback.ReqIFImportOptions class is a handle class.

Creation
options = slreq.getCurrentImportOptions returns an
slreq.callback.ReqIFImportOptions object if you are importing requirements from a ReqIF
file.

Properties
MappingFile — Attribute mapping file
string scalar | character vector

Attribute mapping file to use during import, specified as a string scalar or character vector. Specify
the full file path for the file.

Attributes:

GetAccess public
SetAccess public

Attr2ReqProp — Attribute mapping
containers.Map object

Attribute mapping from ReqIF attributes to Requirements Toolbox properties, specified as a
containers.Map object. For example, this code creates a containers.Map object that maps:

• ReqSum to “Summary” on page 2-0
• Desc to “Description” on page 2-0
• ID to “CustomId” on page 2-0

attrMap = containers.Map(ReqSum="Summary");
attrMap("Desc") = "Description";
attrMap("ID") = "Custom ID";

Example: myImportOptions.Attr2ReqProp = attrMap;

 slreq.callback.ReqIFImportOptions class

2-99

Attributes:

GetAccess public
SetAccess public

SingleSpec — Name of single specification to import
string scalar | character vector

Name of the single specification to import from the ReqIF file, specified as a string scalar or
character vector. If the ReqIF file has multiple specifications, only this specification is imported.

Attributes:

GetAccess public
SetAccess public

AsMultipleReqSets — Option to import into separate requirement sets
0 (default) | 1

Option to import each specification into separate requirement sets, specified as a 1 or 0 of data type
logical.

If your ReqIF file has multiple specifications and you set this property to 0, the specifications are
combined into one requirement set.

Attributes:

GetAccess public
SetAccess public

ImportLinks — Option to import links
1 (default) | 0

Option to import the links from the ReqIF file, specified as a 1 or 0 of data type logical.

Attributes:

GetAccess public
SetAccess public

AutoDetectMapping — Option to automatically detect mapping
1 (default) | 0

Option to allow Requirements Toolbox to automatically detect the attribute mapping to use based on
the contents of the ReqIF file, specified as a 1 or 0 of data type logical.

Attributes:

GetAccess public
SetAccess public

AsReference — Option to import as references
1 (default) | 0

Option to import as slreq.Reference objects, specified as a 1 or 0 of data type logical. If 0,
requirements import as slreq.Requirement objects.

2 Classes

2-100

Attributes:

GetAccess public
SetAccess public

RichText — Option to import with rich text
0 (default) | 1

Option to import requirements with rich text, specified as a 1 or 0 of data type logical.

Attributes:

GetAccess public
SetAccess public

DocUri — Resource identifier for requirements document
string scalar | character vector

Resource identifier for external requirements document, specified as a string scalar or character
vector.

Attributes:

GetAccess public
SetAccess public

DocType — Requirements document custom link type
string scalar | character vector

Requirements document custom link type, returned as a string scalar or character vector.

Attributes:

GetAccess public
SetAccess private

ReqSet — Requirement set name
character vector

Requirement set name, returned as a character vector.

Attributes:

GetAccess public
SetAccess private

PreImportFcn — Contents of PreImportFcn callback
string scalar | character vector

Contents of the PreImportFcn callback for the current Import node, specified as a string scalar or a
character vector.

Attributes:

GetAccess public
SetAccess public

 slreq.callback.ReqIFImportOptions class

2-101

PostImportFcn — Contents of PostImportFcn callback
string scalar | character vector

Contents of the PostImportFcn callback for the current Import node, specified as a string scalar or
a character vector.

Attributes:

GetAccess public
SetAccess public

Examples

Customize ReqIF Import Options

This example shows how to customize ReqIF™ import options by using the PreImportFcn callback.

Use slreq.import to import the ReqIF™ file mySpec.reqif into Requirements Toolbox™. Name
the imported requirement set myReqSet and register the script myPreImportScript as the
PreImportFcn callback to use during import. Return a handle to the requirement set.

[~,~,rs] = slreq.import("mySpec.reqif",ReqSet="myReqSet",preImportFcn="myPreImportScript");

The script myPreImportScript uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

type myPreImportScript.m

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile.xml";

Return the importOptions object.

importOptions

importOptions =
 ReqIFImportOptions with properties:

 MappingFile: "myMappingFile.xml"
 Attr2ReqProp: []
 SingleSpec: ''
 AsMultipleReqSets: 0
 ImportLinks: 1
 AutoDetectMapping: 1
 AsReference: 1
 RichText: 0
 DocUri: 'C:\Users\jdoe\MATLAB\Examples\CustomizeReqIFImportOptionsExample\mySpec.reqif'
 DocType: 'REQIF'
 ReqSet: 'myReqSet'
 PreImportFcn: 'myPreImportScript'
 PostImportFcn: ''

2 Classes

2-102

Version History
Introduced in R2022a

See Also
slreq.getCurrentImportOptions | setPreImportFcn | getPreImportFcn

Topics
“Use Callbacks to Customize Requirement Import Behavior”

 slreq.callback.ReqIFImportOptions class

2-103

slreq.verification.services.TAP class
Package: slreq.verification.services

Work with external results sources

Description
Instances of the slreq.verification.services.TAP provides utilities for interpreting TAP (Test
Anything Protocol) result files for verification.

Creation
Service objects used in the custom logic of GetResultFcn to script up result fetching logic.

tapService = slreq.verification.services.TAP() directs the result fetching logic to the
TAP file.

Output Arguments

tapService — services used for TAP files
character vector

Service used in GetResultFcn to script up result fetching logic

Methods
The output is result that is an instance of the tapService object. For the resultFile with
testID, the GetResultFcn function returns the result for that testID:

result = tapService.getResult(testID, resultFile);

The GetResultFcn fetches the result for the testID with test points in the resultFile using:

result = tapService.getAllResults(resultFile);

Example
Service Usage in a GetResultFcn of Link Type

 function result = GetResultFcn(link)
 testID = link.destination.id;
 testFile = link.destination.artifact;
 resultFile = getResultFile(testFile);

 if ~isempty(resultFile) && isfile(resultFile)
 tapService = slreq.verification.services.TAP();
 result = tapService.getResult(testID, resultFile);
 else
 result.status = slreq.verification.Status.Unknown;

2 Classes

2-104

 end
end

Version History
Introduced in R2020a

See Also
slreq.Link | “Link Type Properties”

 slreq.verification.services.TAP class

2-105

slreq.verification.services.JUnit class
Package: slreq.verification.services

Work with external results sources

Description
Instances of the slreq.verification.services.JUnit provides utilities for interpreting JUnit
result files for verification.

Creation
JUnitService = slreq.verification.services.JUnit() directs the result fetching logic to
the XML file.

Output Arguments

JUnitService — Services used for XML files
character vector

Services used in GetResultFcn to script up result fetching logic

Methods
The output is result that is an instance of the JUnitService object. For the resultFile with
testID, the GetResultFcn function returns the result for that testID:

result = JUnitService.getResult(testID, resultFile);

The GetResultFcn fetches the result for the testID with test points in the resultFile using:

result = JUnitService.getAllResults(resultFile);

Example
Service Usage in a GetResultFcn of Link Type

 function result = GetResultFcn(link)
 testID = link.destination.id;
 testFile = link.destination.artifact;
 resultFile = getResultFile(testFile);

 if ~isempty(resultFile) && isfile(resultFile)
 JUnitService = slreq.verification.services.JUnit();
 result = JUnitService.getResult(testID, resultFile);
 else
 result.status = slreq.verification.Status.Unknown;
 end
end

2 Classes

2-106

Version History
Introduced in R2020a

See Also
slreq.Link | “Link Type Properties”

 slreq.verification.services.JUnit class

2-107

Methods

3

add
Class: slreq.Justification
Package: slreq

Add child justification

Syntax
childJustification = add(jt)
childJustification = add(jt,PropertyName,
PropertyValue,...,PropertyNameN,PropertyValueN)

Description
childJustification = add(jt) adds a child justification to the justification object jt.

childJustification = add(jt,PropertyName,
PropertyValue,...,PropertyNameN,PropertyValueN) adds a child justification with the
additional properties specified by PropertyName and PropertyValue.

Input Arguments
jt — Justification
slreq.Justification object

Justification, specified as an slreq.Justification object.

PropertyName — Justification property name
string scalar | character vector

Justification property name, specified as an string scalar or a character vector.

For more information, see slreq.Justification properties on page 2-50.

PropertyValue — Justification property value
string scalar | character vector

Justification property value, specified as an string scalar or a character vector.

Output Arguments
childJustification — Requirement justification
slreq.Justification object

New child justification, returned as an slreq.Justification object.

Examples

3 Methods

3-2

Add a Child Justification Under a Justification

This example shows how to add a child justification under another justification.

Load a requirement set file called My_Requirement_Set_1.

rs = slreq.load('C:\MATLAB\My_Requirement_Set_1.slreqx');

Add a justification to the requirement set.

jt = addJustification(rs,"Id","J1",...
"Summary","Non-functional requirement justification");

Add a child justification to the justification jt.

childJt = add(just1,"Id","J1.1",...
"Summary","Justification for non-functional requirement")

childJust1 =

 Justification with properties:

 Id: 'J1.1'
 Summary: 'Justification for non-functional requirement'
 Description: ''
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 25-Aug-2017 11:21:29
 CreatedBy: 'John Doe'
 ModifiedBy: 'Jane Doe'
 SID: 11
 FileRevision: 2
 ModifiedOn: 25-Aug-2017 14:00:29
 Dirty: 0
 Comments: [0×0 struct]

Tips
• To add a top-level requirement to a requirement set, use slreq.ReqSet.add. To add a

requirement as a child of another requirement, use slreq.Requirement.add. To add a
referenced requirement as a child of another referenced requirement, use
slreq.Requirement.add.

Version History
Introduced in R2018b

See Also
slreq.Justification | slreq.ReqSet.add | slreq.Requirement.add |
slreq.Requirement.add | children | remove

 add

3-3

addComment
Class: slreq.Justification
Package: slreq

Add comments to justifications

Syntax
newComment = addComment(jt,myComment)

Description
newComment = addComment(jt,myComment) adds a comment, myComment, to the justification jt.

Input Arguments
jt — Justification
slreq.Justification object

Justification, specified as an slreq.Justification object.

myComment — Comment text
string scalar | character vector

Comment text to add to the requirement, specified as a string scalar or character vector.

Output Arguments
newComment — Comment
struct

Comment added, returned as a structure containing these fields:

CommentedBy — Name of individual or organization who added comment
character vector

Name of the individual or organization who added the comment, returned as a character vector.

CommentedOn — Date that comment was added
datetime

Date that the comment was added, returned as a datetime object.

CommentedRevision — Comment revision number
int32 object

Comment revision number, returned as an int32 object.

Text — Comment text
character vector

3 Methods

3-4

Comment text, returned as a character vector.

Examples

Add Comments to Justifications

This example shows how to add comments to justifications.

Load the requirement set crs_req_justs.

rs = slreq.load("crs_req_justs");

Get a handle to the first justification in the requirement set.

jt = find(rs,Index=5);

Add a comment to the justification.

newComment = addComment(jt,"My new comment.");

Tips
• To add a comment to a requirement, use slreq.Requirement.addComment. To add a comment

to a referenced requirement, use slreq.Reference.addComment.

Alternative Functionality
App

You can also add a comment by using the Requirements Editor. Select a justification and, in the
right pane, under Comments, click Add Comment.

Version History
Introduced in R2018b

See Also
slreq.Justification | getAttribute

 addComment

3-5

children
Class: slreq.Justification
Package: slreq

Find children justifications

Syntax
childJusts = children(jt)

Description
childJusts = children(jt) returns the child justifications childJusts of the
slreq.Justification object jt.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments
childJusts — Child justifications
slreq.Justification object | slreq.Justification object array

The child justifications belonging to the justification jt, returned as slreq.Justification objects.

Examples
Find Child Justifications

% Load a requirement set file and find justification objects
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allJusts = find(rs, 'Type', 'Justification')

allJusts =

 1×20 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID

3 Methods

3-6

 FileRevision
 ModifiedOn
 Dirty
 Comments

jt1 = allJusts(1);

% Find the children of jt1
childJusts = children(jt1)

childJusts =

 1×10 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

Tips
• To get the top-level items in a requirement set, use slreq.ReqSet.children. To get the child

requirements of a requirement use slreq.Requirement.children. To get the child referenced
requirements of a referenced requirement, use slreq.Reference.children.

Version History
Introduced in R2018b

See Also
slreq.Justification | add | slreq.ReqSet.children | slreq.Requirement.children |
slreq.Reference.children | parent

 children

3-7

copy
Class: slreq.Justification
Package: slreq

Copy and paste justification

Syntax
tf = copy(just1,location,just2)

Description
tf = copy(just1,location,just2) copies justification just1 and pastes it under, before, or
after justification just2 depending on the location specified by location. The function returns 1 if
the copy and paste is executed.

Note If you copy a justification and paste it within the same requirement set, the copied justification
retains the same custom attribute values as the original. If the justification is pasted into a different
requirement set, the copied justification does not retain the custom attribute values.

Input Arguments
just1 — Justification to copy
slreq.Justification object

Justification to copy, specified as an slreq.Justification object.

location — Justification paste location
'under' | 'before' | 'after'

Paste location, specified as 'under', 'before', or 'after'.

just2 — Justification to paste original justification near
slreq.Justification object

Justification to paste original justification near, specified as an slreq.Justification object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 0 or 1 of data type logical.

ExamplesCopy and Paste a Justification

3 Methods

3-8

This example shows how to copy a justification and paste it under, before, or after another
justification.

Load the crs_req_justs requirement file, which describes a cruise control system, and assign it to
a variable. Find two justifications by index. The first justification will be copied and pasted in relation
to the second justification.

rs = slreq.load('crs_req_justs');
jt1 = find(rs,'Type','Justification','Index','5.1');
jt2 = find(rs,'Type','Justification','Index','5.2');

Paste Under a Justification

Copy and paste the first justification, jt1, under the second justification, jt2. The first justification
becomes the last child justification of jt2, which you can verify by finding the children of jt2 and
comparing the summary of the last child and jt1.

tf = copy(jt1,'under',jt2);
childJusts = children(jt2);
lastChild = childJusts(numel(childJusts));
lastChild.Summary

ans =
'Non-functional requirement'

jt1.Summary

ans =
'Non-functional requirement'

Paste Before a Justification

Copy and paste the first justification, jt1, before the second justification, jt2. Confirm that the
justification was pasted before jt2 by checking the index and summary. The old index of jt2 was
5.2. The index of the pasted justification should be 5.2 and the index of jt2 should be 5.3.

tf = copy(jt1,'before',jt2);
pastedJust1 = find(rs,'Type','Justification','Index','5.2');
pastedJust1.Summary

ans =
'Non-functional requirement'

jt2.Index

ans =
'5.3'

Paste After a Justification

Copy and paste the first justification, jt1, after the second justification, jt2. Confirm that the
justification was pasted after jt2 by checking the index. The index of jt2 is 5.3 and should not
change, which means the index of the pasted justification should be 5.4.

tf = copy(jt1,'after',jt2);
pastedJust2 = find(rs,'Type','Justification','Index','5.4');
pastedJust2.Summary

 copy

3-9

ans =
'Non-functional requirement'

jt2.Index

ans =
'5.3'

Cleanup

Clear the open requirement set and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
move | moveDown | moveUp | slreq.Justification

3 Methods

3-10

demote
Class: slreq.Justification
Package: slreq

Demote justifications

Syntax
demote(jt)

Description
demote(jt) demotes the slreq.Justification object jt down one level in the hierarchy.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Examples
Demote a Justification

% Load a requirement set file and find justification objects
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

allJusts = find(rs, 'Type', 'Justification')

allJusts =

 1×20 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

jt1 = allJusts(1);

% Find the children of jt1

 demote

3-11

childJusts = children(jt1)

childJusts =

 1×10 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

% Demote the first child of jt1
demotedJustification = demote(childJusts(1));

% Find the parent of demotedJustification
parentJustification = parent(demotedJustification)

parentJustification =

 Justification with properties:

 Id: 'J1.1'
 Summary: 'Justifications'
 Description: ''
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 27-Feb-2014 10:15:38
 CreatedBy: 'Jane Doe'
 ModifiedBy: 'John Doe'
 SID: 34
 FileRevision: 21
 ModifiedOn: 02-Aug-2017 13:49:40
 Dirty: 1
 Comments: [0×0 struct]

Version History
Introduced in R2018b

See Also
promote | children | parent

3 Methods

3-12

find
Class: slreq.Justification
Package: slreq

Find children of parent justification

Syntax
childJusts = find(jt,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN)

Description
childJusts = find(jt,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN) finds and returns child justifications childJusts of the parent justification jt
that match the properties specified by PropertyName and PropertyValue.

Input Arguments
jt — Justification
slreq.Justification object

Justification, specified as an slreq.Justification object.

PropertyName — Justification property
character vector

Justification property name, specified as a character vector. See the valid property names in the
properties section of slreq.Justification.
Example: 'Type','Keywords','SID'

PropertyValue — Justification property value
character vector | character array | datetime value | scalar | logical | structure array

Justification property value, specified as a character vector, character array, datetime value, scalar,
logical, or structure array. The data type depends on the specified propertyName. See the valid
property values in the properties section of slreq.Justification.

Output Arguments
childJusts — Child justifications
slreq.Justification object | slreq.Justification object array

Child justifications, returned as slreq.Justification objects.

Examples

 find

3-13

Find Child Justifications

This example shows how to find child justifications that match property values.

Load the crs_req_justs requirement file, which describes a cruise control system, and assign it to
a variable. Find the justification with index 5, as this justification has child justifications.

rs = slreq.load('crs_req_justs');
parentReq = find(rs,'Type','Justification','Index','5');

Find all the child justifications of parentReq that were modified in revision 1.

childReqs1 = find(parentReq,'FileRevision',1)

childReqs1=1×6 object
 1x6 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 IndexEnabled
 IndexNumber
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

Find all the child justifications of parentReq that were modified in revision 1 and whose summary
says Non-functional requirement.

childReqs2 = find(parentReq,'FileRevision',1,'Summary','Non-functional requirement')

childReqs2 =
 Justification with properties:

 Id: '#72'
 Summary: 'Non-functional requirement'
 Description: '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/strict.dtd">...'
 Keywords: {}
 Rationale: ''
 CreatedOn: 27-Feb-2017 10:34:22
 CreatedBy: 'itoy'
 ModifiedBy: 'asriram'
 IndexEnabled: 1
 IndexNumber: []
 SID: 72
 FileRevision: 1
 ModifiedOn: 03-Aug-2017 17:14:44
 Dirty: 0
 Comments: [0x0 struct]

3 Methods

3-14

 Index: '5.1'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2018b

See Also
slreq.find | slreq.ReqSet | slreq.Justification

 find

3-15

getAttribute
Class: slreq.Justification
Package: slreq

Get justification attributes

Syntax
val = getAttribute(jt, propertyName)

Description
val = getAttribute(jt, propertyName) gets a justification property propertyName of the
justification jt.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

propertyName — Justification property
character vector

Justification property name.
Example: 'SID', 'CreatedOn', 'Summary'

Examples
Get Justification Attributes

% Load a requirement set file and get the handle to one justification
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
jt1 = find(rs, 'Type', 'Justification', 'ID', 'J3.5');

% Get the Summary of jt1
summaryJt1 = getAttribute(jt1, 'Summary')

summaryJt1 =

 'Requirement Justification'

Version History
Introduced in R2018b

3 Methods

3-16

See Also
setAttribute

 getAttribute

3-17

isFilteredIn
Class: slreq.Justification
Package: slreq

Check filtered justifications

Syntax
tf = isFilteredIn(jt)

Description
tf = isFilteredIn(jt) checks if the justification, jt, is filtered in the Requirements Editor or
Requirements Perspective and returns 1 if the justification is not filtered and 0 if the justification is
filtered.

Input Arguments
jt — Justification
slreq.Justification object

Justification, specified as an slreq.Justification object.

Examples

Check for Filtered Justifications

This example shows how to check if a justification is filtered.

Load the crs_req_justs requirement set.

rs = slreq.open("crs_req_justs");

Find the justification with Index set to 5.

jt = find(rs,Index=5);

Check if the justification is filtered.

tf = isFilteredIn(jt)

tf = logical
 1

Create a filter called ContainerReqs. Use the ReqFilter property to define a filter that displays
only requirements with Type set to Container.

myView = slreq.View.create("ContainerReqs");
myView.ReqFilter = "{'ReqType','Container'};"

3 Methods

3-18

myView =
 View with properties:

 Name: 'ContainerReqs'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

Apply the filter, then check if the justification is filtered.

activate(myView)
tf = isFilteredIn(jt)

tf = logical
 0

Clear the loaded requirement sets and close the Requirements Editor.

slreq.clear;

Tips
• To check if a requirement is filtered, use slreq.Requirement.isFilteredIn. To check if a

referenced requirement is filtered, use slreq.Reference.isFilteredIn. To check if a link is
filtered, use slreq.Link.isFilteredIn.

Version History
Introduced in R2022b

See Also
Apps
Requirements Editor

Classes
slreq.Justification

Objects
slreq.View

Topics
“Filter Requirements and Links in the Requirements Editor”

 isFilteredIn

3-19

isHierarchical
Class: slreq.Justification
Package: slreq

Check if justification is hierarchical

Syntax
tf = isHierarchical(jt)

Description
tf = isHierarchical(jt) checks if the slreq.Justification object jt is part of a hierarchy
of justifications and returns the Boolean tf.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments
tf — Hierarchical justification status
true | false

The hierarchical justification status of the slreq.Justification object, returned as a Boolean.

Examples
Query Hierarchical Justification Status

% Load a requirement set file and find justification objects
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

allJusts = find(rs, 'Type', 'Justification')

allJusts =

 1×9 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy

3 Methods

3-20

 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

% Check if the first justification in allJusts is hierarchically justified
tf = isHierarchical(allJusts(1))

tf =

 logical

 0

Version History
Introduced in R2018b

See Also
setHierarchical | children

 isHierarchical

3-21

move
Class: slreq.Justification
Package: slreq

Move justification in hierarchy

Syntax
tf = move(jt1,location,jt2)

Description
tf = move(jt1,location,jt2) moves justification jt1 under, before, or after justification jt2
depending on the location specified by location. The function returns 1 if the move is executed
without error.

Input Arguments
jt1 — Justification to move
slreq.Justification object

Justification to move, specified as an slreq.Justification object.

location — Justification move location
'under' | 'before' | 'after'

Justification move location, specified as 'under', 'before', or 'after'.

jt2 — Justification
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 0 or 1 of data type logical.

Examples

Move a Justification

This example shows how to move a justification under, before, or after another justification.

3 Methods

3-22

Load the crs_req_justsrequirement file, which describes a cruise control system, and assign it to a
variable. Find two justifications by index. The first justification will be moved in relation to the second
justification.

rs = slreq.load('crs_req_justs');
jt1 = find(rs,'Type','Justification','Index','5.1');
jt2 = find(rs,'Type','Justification','Index','5.2');

Move Under a Justification

Move the first justification, jt1, under the second justification, jt2. The first justification becomes
the last child justification of justification jt2, and jt2 moves up one in the hierarchy, which you can
verify by checking the index of jt1 and jt2. The old indices of jt1 and jt2 were 5.1 and 5.2,
respectively.

tf = move(jt1,'under',jt2);
jt1.Index

ans =
'5.1.3'

jt2.Index

ans =
'5.1'

Move Before a Justification

Move the first justification, jt1, before the second justification, jt2. Confirm that the justification
was moved correctly by checking the indices of jt1 and jt2. The indices of jt1 and jt2 are now
the same as they were originally: 5.1 and 5.2, respectively.

tf = move(jt1,'before',jt2);
jt1.Index

ans =
'5.1'

jt2.Index

ans =
'5.2'

Move After a Justification

Move the first justification, jt1, after the second justification, jt2. When you move justification jt1
down in the hierarchy, justification jt2 also moves up, which you can verify by checking the indices
of jt1 and jt2.

tf = move(jt1,'after',jt2);
jt1.Index

ans =
'5.2'

jt2.Index

ans =
'5.1'

 move

3-23

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
moveDown | copy | moveUp | slreq.Justification

3 Methods

3-24

moveDown
Class: slreq.Justification
Package: slreq

Move justification down in hierarchy

Syntax
tf = moveDown(jt)

Description
tf = moveDown(jt) moves the justification jt down one spot in the hierarchy, and returns 1 if the
move is executed without error. The justification jt cannot be moved to a new level in the hierarchy.

Input Arguments
jt — Justification
slreq.Justification

Justification, specified as an slreq.Justification object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 0 or 1 of data type logical.

Examples

Move a Justification Down

This example shows how to move a justification down in the hierarchy.

Load the crs_req_justs requirement file, which describes a cruise control system, and assign it to
a variable. Find the justification with index 5.3.

rs = slreq.load('crs_req_justs');
jt1 = find(rs,'Type','Justification','Index','5.3');

Move the justification down one spot in the hierarchy. Confirm the move by checking the success
status, tf1, and the index.

tf1 = moveDown(jt1)

tf1 = logical
 1

 moveDown

3-25

jt1.Index

ans =
'5.4'

Find the justification with index 5.2.2. This justification is already at the bottom of its level in the
hierarchy and cannot be moved down further, which you can verify by trying to move it down.
Confirm that the move failed by checking the success status, tf2, and the index.

jt2 = find(rs,'Type','Justification','Index','5.2.2');
tf2 = moveDown(jt2)

tf2 = logical
 0

jt2.Index

ans =
'5.2.2'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
move | copy | moveUp | slreq.Justification

3 Methods

3-26

moveUp
Class: slreq.Justification
Package: slreq

Move justification up in hierarchy

Syntax
tf = moveUp(jt)

Description
tf = moveUp(jt) moves the justification jt up one spot in the hierarchy, and returns 1 if the move
executes without error. The justification jt cannot be moved to a new level in the hierarchy.

Input Arguments
jt — Justification
slreq.Justification

Justification, specified as an slreq.Justification object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 0 or 1 of data type logical.

Examples

Move a Justification Up

This example shows how to move a justification up in the hierarchy.

Load the crs_req_justs requirement file, which describes a cruise control system, and assign it to
a variable. Find the justification with index 5.3.

rs = slreq.load('crs_req_justs');
jt1 = find(rs,'Type','Justification','Index','5.3');

Move the justification up one spot in the hierarchy. Confirm the move by checking the success status,
tf1, and the index.

tf1 = moveUp(jt1)

tf1 = logical
 1

 moveUp

3-27

jt1.Index

ans =
'5.2'

Find the justification with index 5.1. This justification is already at the top of its level in the
hierarchy and cannot be moved up further, which you can verify by trying to move it up. Confirm that
the move failed by checking the success status, tf2, and the index.

jt2 = find(rs,'Type','Justification','Index','5.1');
tf2 = moveUp(jt2)

tf2 = logical
 0

jt2.Index

ans =
'5.1'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
moveDown | copy | move | slreq.Justification

3 Methods

3-28

outLinks
Get outgoing links for justifications

Syntax
myLinks = outLinks(jt)

Description
myLinks = outLinks(jt) returns the outgoing links for the justification jt.

Input Arguments
jt — Justification
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments
myLinks — Outgoing links
slreq.Link array

Outgoing links for the justification, returned as an slreq.Link array.

Examples

Get Outgoing Links for Justifications

This example shows how to get outgoing links for justifications.

Load the requirement set crs_req_justs.

rs = slreq.load("crs_req_justs");

Find the justification with Index set to 5.2.

jt = find(rs,Index=5.2);

Get the outgoing links for the justification.

myLinks = outLinks(jt);

Tips
• To get the outgoing links for a requirement, use slreq.Requirement.outLinks. To get the

outgoing links for a referenced requirement, use slreq.Reference.outLinks.

 outLinks

3-29

• The links for justification objects are always outgoing.

Alternative Functionality
App

You can also use the Requirements Editor to view outgoing links. Select a justification. In the right
pane, under Links, the outgoing links icon indicates outgoing links.

Version History
Introduced in R2018b

See Also
slreq.Justification | slreq.Link

3 Methods

3-30

parent
Class: slreq.Justification
Package: slreq

Find parent item of justification

Syntax
parentObj = parent(jt)

Description
parentObj = parent(jt) returns the parent object parentObj of the slreq.Justification
object jt.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments
parentObj — Parent object
slreq.Justification object | slreq.ReqSet object

The parent of the justification jt, returned as an slreq.Justification object or as an
slreq.ReqSet object.

Examples
Find Parent Justification

% Load a requirement set file and find justification objects
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
myJustifications = find(rs, 'Type', 'Justification')

myJustifications =

 1×13 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy

 parent

3-31

 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

% Find the parent of the first justification object
parentJust1 = parent(myJustifications(1))

parentJust1 =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

% Find the parent of the third justification object
parentJust3 = parent(myJustifications(3))

parentJust3 =

 Justification with properties:

 Id: 'J1'
 Summary: 'Justifications'
 Description: ''
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 27-Feb-2014 10:15:38
 CreatedBy: 'Jane Doe'
 ModifiedBy: 'John Doe'
 SID: 35
 FileRevision: 11
 ModifiedOn: 02-Aug-2017 13:49:40
 Dirty: 1
 Comments: [0×0 struct]

Version History
Introduced in R2018b

See Also
children | demote | promote

3 Methods

3-32

promote
Class: slreq.Justification
Package: slreq

Promote justifications

Syntax
promote(jt)

Description
promote(jt) promotes the slreq.Justification object jt up one level in the hierarchy.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Examples
Promote a Justification

% Load a requirement set file and find justification objects
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

allJusts = find(rs, 'Type', 'Justification')

allJusts =

 1×20 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

jt1 = allJusts(1);

% Find the children of jt1

 promote

3-33

childJusts = children(jt1)

childJusts =

 1×10 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

% Promote the first child of jt1
promote(childJusts(1));

% Find the parent of childJusts(1)
parentJustification = parent(childJusts(1))

parentJustification =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 81
 Dirty: 1
 CustomAttributeNames: {}

Version History
Introduced in R2018b

See Also
demote | children | parent

3 Methods

3-34

remove
Class: slreq.Justification
Package: slreq

Remove justification items

Syntax
count = remove(jt, 'PropertyName', PropertyValue)

Description
count = remove(jt, 'PropertyName', PropertyValue) removes child justification items
belonging to the parent justification jt with additional properties specified by PropertyName and
PropertyValue. Returns the number of items removed as count.

Input Arguments
jt — Parent justification object
slreq.Justification object

Parent justification, specified as an slreq.Justification object.

Output Arguments
count — Removed justification count
double

Number of justification items removed, returned as a double.

Examples
Remove Justification Items

Load a requirement set file.

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

Find justification objects in the requirement set.

myJustifications = find(rs, 'Type', 'Justification')

myJustifications =

 1×10 Justification array with properties:

 Id
 Summary
 Description
 Keywords

 remove

3-35

 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

Remove one of the justification objects that was created by Jane Doe.

count = remove(myJustifications(1), 'CreatedBy', 'Jane Doe')

count =

 1

Version History
Introduced in R2018b

See Also
add

3 Methods

3-36

reqSet
Class: slreq.Justification
Package: slreq

Return parent requirement set

Syntax
rsout = reqSet(jt)

Description
rsout = reqSet(jt) returns the parent requirement set rsout. The justification jt belongs to
rsout.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments
rsout — Parent requirement set
slreq.ReqSet object

The parent requirement set of the justification jt, returned as an slreq.ReqSet object.

Examples
Query Requirement Set Information

% Load a new requirement set file and select one justification
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allJustifications = find(rs, 'Type', 'Justification');
jt = allJustifications(1);

% Query which requirement set jt belongs to
reqSet(jt)

ans =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 65
 Dirty: 0

 reqSet

3-37

 CustomAttributeNames: {}
 CreatedBy: 'John Doe'
 CreatedOn: 17-Dec-2016 10:02:30
 ModifiedBy: 'Jane Doe'
 ModifiedOn: 01-May-2016 11:20:21

Version History
Introduced in R2018b

See Also
parent | promote

3 Methods

3-38

setAttribute
Class: slreq.Justification
Package: slreq

Set justification attributes

Syntax
setAttribute(jt, propertyName, propertyValue)

Description
setAttribute(jt, propertyName, propertyValue) sets a justification property.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

propertyName — Justification property
character vector

Justification property name.
Example: 'SID', 'CreatedOn', 'Summary'

propertyValue — Justification property value
character vector

Justification property value.
Example: 'Test Justification', 'J4.5.4'

Examples
Set Justification Attributes

% Load a requirement set file and get the handle to one justification
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
jt1 = find(rs, 'Type', 'Justification', 'ID', 'J2.1');

% Set the Summary of req1
setAttribute(jt1, 'Summary', 'Controller Requirement Justification');

jt1

jt1 =

 Justification with properties:

 setAttribute

3-39

 Id: 'J2.1'
 Summary: 'Controller Requirement Justification'
 Description: ''
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 27-Feb-2014 10:15:38
 CreatedBy: 'Jane Doe'
 ModifiedBy: 'John Doe'
 SID: 37
 FileRevision: 25
 ModifiedOn: 02-Aug-2017 13:49:40
 Dirty: 1
 Comments: [0×0 struct]

Version History
Introduced in R2018b

See Also
getAttribute

3 Methods

3-40

setHierarchical
Class: slreq.Justification
Package: slreq

Change hierarchical justification status

Syntax
setHierarchical(jt, tf)

Description
setHierarchical(jt, tf) changes the hierarchical justification status of the
slreq.Justification object jt as specified by the Boolean tf.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

tf — Hierarchical justification status flag
true | false

The hierarchical justification status of the slreq.Justification object, specified as a Boolean.

Examples
Change Hierarchical Justification Status

% Load a requirement set file and find justification objects
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

allJusts = find(rs, 'Type', 'Justification')

allJusts =

 1×10 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn

 setHierarchical

3-41

 Dirty
 Comments

% Check if the first justification in allJusts is hierarchically justified
tf = isHierarchical(allJusts(1))

tf =

 logical

 0

% Change the first justification in allJusts to be hierarchically justified
setHierarchical(allJusts(1), true);

Version History
Introduced in R2018b

See Also
isHierarchical | parent

3 Methods

3-42

destination
Class: slreq.Link
Package: slreq

Get link destination

Syntax
dest = destination(myLink)

Description
dest = destination(myLink) returns the link destination of the link myLink.

Input Arguments
myLink — Link object
slreq.Link object

Link, specified as an slreq.Link object.

Output Arguments
dest — Link destination
struct

Link destination, returned as a MATLAB structure that contains these fields:

• domain
• artifact
• id
• summary
• reqSet
• sid

Examples

Get a Link Destination

This example shows how to get a link destination from a link object.

Load the crs_req requirement files, which contain links for a cruise control system.

slreq.load("crs_req");
slreq.load("crs_req_func_spec");

Find the crs_req link set.

 destination

3-43

myLinkSet = slreq.find(Type="LinkSet",Description="crs_req");

Get the links from the link set.

myLinks = getLinks(myLinkSet);

Get the link destination structure for one of the links.

dest = destination(myLinks(1));

Convert the link destination structure to an object.

destObj = slreq.structToObj(dest);

Tips
• You can use slreq.structToObj to convert the link destination structure to an object.

Version History
Introduced in R2018a

See Also
source | slreq.Link | linkSet

3 Methods

3-44

getAttribute
Class: slreq.Link
Package: slreq

Get link property values

Syntax
val = getAttribute(myLink,propertyName)

Description
val = getAttribute(myLink,propertyName) returns the value of the link property,
propertyName, for the link myLink. The property can be a built-in property, a custom attribute, or a
stereotype property.

Note To return the value of a stereotype property, you must pass the fully qualified name of the
property. For example, the fully qualified name for a property called Status in a stereotype called
myStereotype in a profile called myProfile is myProfile.myStereotype.Status.

Input Arguments
myLink — Link
slreq.Link object

Link, specified as an slreq.Link object.

propertyName — Link property name
string scalar | character vector

Link property name, specified as a string scalar or character vector.
Example: "Description"

Output Arguments
val — Link property value
string scalar | character array | boolean | ...

Link property value, returned as a:

• String scalar
• Character array
• boolean
• datetime
• single

 getAttribute

3-45

• double
• int8
• int16
• int32
• int64
• uint8
• uint16
• uint32
• uint64
• enumeration

The data type depends on the type of the built-in property, custom attribute, or stereotype property.

Examples

Get Link Attribute Value

This example shows how to get the attribute value of a specified custom attribute for a link.

Load the crs_req requirement files, which contain links for a cruise control system. Find the link
set.

slreq.load('crs_req');
ls = slreq.find('Type','LinkSet');

Create a links array containing all the links from link set ls. Get one link from the array. Get the
attribute value of the custom attribute called Target Speed Change, which tracks whether linked
requirements are related to incrementing or decrementing the speed.

linksArray = find(ls);
myLink = linksArray(7);
val = getAttribute(myLink,'Target Speed Change')

val =
'Decrement'

Cleanup

Clean up commands. Clear the open requirement sets and close the open models without saving the
changes.

slreq.clear;
bdclose all;

Tips
• To get property values for requirements, use slreq.Requirement.getAttribute.

Version History
Introduced in R2020b

3 Methods

3-46

See Also
slreq.Link | slreq.LinkSet | setAttribute

Topics
“Customize Requirements and Links by Using Stereotypes”
“Manage Custom Attributes for Links by Using the Requirements Toolbox API”

 getAttribute

3-47

isFilteredIn
Class: slreq.Link
Package: slreq

Check filtered links

Syntax
tf = isFilteredIn(myLink)

Description
tf = isFilteredIn(myLink) checks if the link, myLink, is filtered in the Requirements Editor
or Requirements Perspective and returns 1 if the link is not filtered and 0 if the link is filtered.

Input Arguments
myLink — Link
slreq.Link object

Link, specified as an slreq.Link object.

Examples

Check for Filtered Links

This example shows how to check if a link is filtered.

Load the myAddRequirements requirement set, which also loads the myAdd link set.

rs = slreq.open("myAddRequirements");

Find the myAdd link set.

ls = slreq.find(Type="LinkSet",Description="myAdd");

Get the first link in the link set.

linksArray = getLinks(ls);
myLink = linksArray(1);

Check if the link is filtered.

tf = isFilteredIn(myLink)

tf = logical
 1

Create a filter called ImplementLinks. Use the LinkFilter property to define a filter that displays
only links with Type set to Implement.

3 Methods

3-48

myView = slreq.View.create("ImplementLinks");
myView.LinkFilter = "{'LinkType','Implement'};"

myView =
 View with properties:

 Name: 'ImplementLinks'
 ReqFilter: ''
 LinkFilter: "{'LinkType','Implement'};"
 Host: ''

Apply the filter, then check if the link is filtered.

activate(myView)
tf = isFilteredIn(myLink)

tf = logical
 0

Clear the loaded requirement sets and link sets and close the Requirements Editor.

slreq.clear;

Tips
• To check if a requirement is filtered, use slreq.Requirement.isFilteredIn. To check if a

referenced requirement is filtered, use slreq.Reference.isFilteredIn. To check if a
justification is filtered, use slreq.Justification.isFilteredIn.

Version History
Introduced in R2022b

See Also
Apps
Requirements Editor

Classes
slreq.Link

Objects
slreq.View

Topics
“Filter Requirements and Links in the Requirements Editor”

 isFilteredIn

3-49

isResolved
Class: slreq.Link
Package: slreq

Check if the link is resolved

Syntax
tf = isResolved(myLink)

Description
tf = isResolved(myLink) checks if the link myLink is resolved.

An unresolved link has a source item or destination item that is not available. The source or
destination items can be unavailable because:

• The artifact that contains the source or destination item is not loaded.

For example, if you load a requirement set that has incoming links from a Simulink model, this
also loads the link set that belongs to the model. However, if you do not load the Simulink model,
the links are unresolved.

• The artifact is loaded, but the specified ID does not exist. Links with invalid IDs are called broken
links.

For example, if you delete a linked requirement, the link becomes unresolved because the stored
ID no longer corresponds to a valid item.

For more information, see “Load and Resolve Links”.

Input Arguments
myLink — Link object
slreq.Link object

Handle to a link, specified as an slreq.Link object.

Output Arguments
tf — Link resolution status
0 | 1

The resolution status of the slreq.Link object, returned as a Boolean.

Examples
Check if Link is Resolved
isResolvedDestination(myLink)

3 Methods

3-50

ans =

 logical

 1

isResolvedSource(myLink)

ans =

 logical

 0

isResolved(myLink)

ans =

 logical

 0

Version History
Introduced in R2019a

See Also
isResolvedDestination | isResolvedSource | setSource | setDestination

Topics
“Load and Resolve Links”

 isResolved

3-51

isResolvedDestination
Class: slreq.Link
Package: slreq

Check if the link destination is resolved

Syntax
tf = isResolvedDestination(myLink)

Description
tf = isResolvedDestination(myLink) checks if the destination of the link myLink is resolved.

An unresolved link has a source item or destination item that is not available. The source or
destination items can be unavailable because:

• The artifact that contains the source or destination item is not loaded.

For example, if you load a requirement set that has incoming links from a Simulink model, this
also loads the link set that belongs to the model. However, if you do not load the Simulink model,
the links are unresolved.

• The artifact is loaded, but the specified ID does not exist. Links with invalid IDs are called broken
links.

For example, if you delete a linked requirement, the link becomes unresolved because the stored
ID no longer corresponds to a valid item.

For more information, see “Load and Resolve Links”.

Input Arguments
myLink — Link object
slreq.Link object

Handle to a link, specified as an slreq.Link object.

Output Arguments
tf — Link destination resolution status
0 | 1

The destination resolution status of the slreq.Link object, returned as a Boolean.

Examples
Check if Link Destination is Resolved
isResolvedDestination(myLink)

3 Methods

3-52

ans =

 logical

 1

Version History
Introduced in R2019a

See Also
isResolved | isResolvedSource | setDestination

Topics
“Load and Resolve Links”

 isResolvedDestination

3-53

isResolvedSource
Class: slreq.Link
Package: slreq

Check if the link source is resolved

Syntax
tf = isResolvedSource(myLink)

Description
tf = isResolvedSource(myLink) checks if the source of the link myLink is resolved.

An unresolved link has a source item or destination item that is not available. The source or
destination items can be unavailable because:

• The artifact that contains the source or destination item is not loaded.

For example, if you load a requirement set that has incoming links from a Simulink model, this
also loads the link set that belongs to the model. However, if you do not load the Simulink model,
the links are unresolved.

• The artifact is loaded, but the specified ID does not exist. Links with invalid IDs are called broken
links.

For example, if you delete a linked requirement, the link becomes unresolved because the stored
ID no longer corresponds to a valid item.

For more information, see “Load and Resolve Links”.

Input Arguments
myLink — Link object
slreq.Link object

Handle to a link, specified as an slreq.Link object.

Output Arguments
tf — Link source resolution status
0 | 1

The source resolution status of the slreq.Link object, returned as a Boolean.

Examples
Check if Link Source is Resolved
isResolved(myLink)

3 Methods

3-54

ans =

 logical

 0

Version History
Introduced in R2019a

See Also
isResolved | isResolvedDestination | setSource

Topics
“Load and Resolve Links”

 isResolvedSource

3-55

linkSet
Class: slreq.Link
Package: slreq

Return parent link set

Syntax
lks = linkSet(myLink)

Description
lks = linkSet(myLink) returns the parent link set lks to which the link myLink belongs.

Input Arguments
myLink — Link object
slreq.Link object

Link, specified as an slreq.Link object.

Output Arguments
lks — Parent link set
slreq.LinkSet object

Parent link set of the link myLink, returned as an slreq.LinkSet object.

Examples
Query Link Set Information

% Load a requirement set file and select one requirement
rs = slreq.load('C:\MATLAB\My_Req_Set.slreqx');
allReqs = find(rs, 'Type', 'Requirement');
req = allReqs(1);

% Find the incoming links that belong to req
allInLinks = inLinks(req);

% Query link set information
myParentLinkSet = linkSet(allInLinks)

myParentLinkSet =

 LinkSet with properties:

 Description: ''
 Filename: 'model_controller.slmx'
 Artifact: 'model_controller.slx'

3 Methods

3-56

 Domain: 'linktype_rmi_simulink'
 Revision: 4
 Dirty: 0

Version History
Introduced in R2018a

See Also
slreq.Link | source | destination

 linkSet

3-57

remove
Class: slreq.Link
Package: slreq

Delete links

Syntax
remove(myLink)

Description
remove(myLink) deletes the link myLink.

Input Arguments
myLink — Link to delete
slreq.Link object

Link to delete, specified as an slreq.Link object.

Examples
Delete Link

% Delete a link myLink

remove(myLink);

Version History
Introduced in R2019a

See Also
slreq.Link

3 Methods

3-58

setAttribute
Class: slreq.Link
Package: slreq

Set link property values

Syntax
setAttribute(myLink,propertyName,propertyValue)

Description
setAttribute(myLink,propertyName,propertyValue) sets a link property, propertyName, to
the value specified by propertyValuefor the link myLink. The property can be a built-in property, a
custom attribute, or a stereotype property.

Note To set the value of a stereotype property, you must pass the fully qualified name of the property.
For example, the fully qualified name for a property called Status in a stereotype called
myStereotype in a profile called myProfile is myProfile.myStereotype.Status.

Input Arguments
myLink — Link
slreq.Link object

Link, specified as an slreq.Link object.

propertyName — Link property name
string scalar | character vector

Link property name, specified as a string scalar or character vector.
Example: "Description"

propertyValue — Link property value
string scalar | character array | boolean | ...

Link property value, specified as a:

• String scalar
• Character array
• boolean
• datetime
• single
• double
• int8

 setAttribute

3-59

• int16
• int32
• int64
• uint8
• uint16
• uint32
• uint64
• enumeration

The data type depends on the type of the built-in property, custom attribute, or stereotype property.

Examples

Set Link Attribute Value

This example shows how to set the attribute value of a specified custom attribute for a link.

Load the crs_req requirement files, which contain links for a cruise control system.

slreq.load('crs_req');
slreq.load('crs_req_func_spec');

Create a links array containing all links. Get one link from the array.

linksArray = slreq.find('Type','Link')

linksArray=1×12 object
 1x12 Link array with properties:

 Type
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedOn
 ModifiedBy
 Revision
 SID
 Comments

lk = linksArray(1);

Custom attribute Target Speed Change, tracks whether the linked requirements are related to
incrementing or decrementing the speed, or not related at all. Set the value of Target Speed
Change to Unset for your link. Then use getAttribute to confirm that the value was set correctly.

setAttribute(lk,'Target Speed Change','Unset');
value = getAttribute(lk,'Target Speed Change')

value =
'Unset'

3 Methods

3-60

Cleanup

Clean up commands. Clear the open requirement sets and close the open models without saving the
changes.

slreq.clear;
bdclose all;

Tips
• To set property values for requirements, use slreq.Requirement.setAttribute.

Version History
Introduced in R2020b

See Also
slreq.Link | slreq.LinkSet | getAttribute

Topics
“Customize Requirements and Links by Using Stereotypes”
“Manage Custom Attributes for Links by Using the Requirements Toolbox API”

 setAttribute

3-61

setDestination
Class: slreq.Link
Package: slreq

Set requirement link destination

Syntax
setDestination(myLink,dest)

Description
setDestination(myLink,dest) sets the link destination artifact dest for the slreq.Link object
myLink.

Input Arguments
myLink — Link object
slreq.Link object

Handle to a link, specified as an slreq.Link object.

dest — Link destination
Requirements Toolbox linkable item

Artifact to serve as the link destination, specified as a Requirements Toolbox linkable item. See
“Linkable Items”.

Examples
Set Simulink Blocks as Link Destinations
% Set the Gain block in model myModel as the destination for link myLink
setDestination(myLink, 'myModel/Gain');

Set Simulink Test Objects as Link Destinations
% Create a Simulink Test test file, test suite, and a test case
myTestfile = sltest.testmanager.TestFile('my_test_file.mldatx');
myTestsuite = sltest.testmanager.TestSuite(myTestfile,'My Test Suite');
myTestcase = sltest.testmanager.TestCase(myTestsuite,'equivalence','Equivalence Test Case');

% Create a link from the test case to requirement myReq
myLink = slreq.createLink(req, myTestcase);

% Set the link destination to the test suite
setDestination(myLink, myTestsuite);

Set Stateflow Objects as Link Destinations
% Get Stateflow Root Handle
rt = sfroot;

3 Methods

3-62

% Find the state with the name 'Intermediate'
myState = rt.find('-isa', 'Stateflow.State', 'Name', 'Intermediate');

% Set the destination for link myLink to myState
setDestination(myLink, myState);

Set Simulink Data Dictionary Entries as Link Destinations

% Get handle to Simulink data dictionary entry
myDict = Simulink.data.dictionary.open('myDictionary.sldd');
dataSectObj = getSection(myDict,'Design Data');
myDictEntry = getEntry(dataSectObj,'myEntry');

% Set the destination for link myLink to myDictEntry
setDestination(myLink, myDictEntry);

Version History
Introduced in R2019b

See Also
setSource

 setDestination

3-63

setSource
Class: slreq.Link
Package: slreq

Set requirement link source

Syntax
setSource(myLink,src)

Description
setSource(myLink,src) sets the link source artifact src for the slreq.Link object myLink. You
can set a link source only to a linkable artifact that belongs to the original link source artifact.

Input Arguments
myLink — Link object
slreq.Link object

Handle to a link, specified as an slreq.Link object.

src — Link source
Requirements Toolbox linkable artifact

Artifact to serve as the link source, specified as a Requirements Toolbox linkable artifact. See
“Linkable Items”.

Examples
Set Simulink Blocks as Link Sources
% Set the Gain block in model myModel as the source for link myLink
setSource(myLink, 'myModel/Gain');

Set Simulink Test Objects as Link Source
% Create a test file, test suite, and a test case
myTestfile = sltest.testmanager.TestFile('my_test_file.mldatx');
myTestsuite = sltest.testmanager.TestSuite(myTestfile,'My Test Suite');
myTestcase = sltest.testmanager.TestCase(myTestsuite,'equivalence','Equivalence Test Case');

% Create a link from the test case to requirement myReq
myLink = slreq.createLink(myTestcase, req);

% Set the link source to the test suite
setSource(myLink, myTestsuite);

Set Stateflow Objects as Link Sources
% Get Stateflow Root Handle
rt = sfroot;

3 Methods

3-64

% Find the state with the name 'Intermediate'
myState = rt.find('-isa', 'Stateflow.State', 'Name', 'Intermediate');

% Set the source for link myLink to myState
setSource(myLink, myState);

Set Simulink Data Dictionary Entries as Link Sources

% Get handle to Simulink data dictionary entry
myDict = Simulink.data.dictionary.open('myDictionary.sldd');
dataSectObj = getSection(myDict,'Design Data');
myDictEntry = getEntry(dataSectObj,'myEntry');

% Set the source for link myLink to myDictEntry
setSource(myLink, myDictEntry);

Change a Link Source to a Different Source Artifact

% Get destination of link link_1
dest = destination(link_1);

% Create a new link, link_2, with source newSrc and destination dest
link_2 = slreq.createLink(newSrc, dest);

% Copy link properties
link_2.Description = link_1.Description;
link_2.Rationale = link_1.Rationale;
link_2.Keywords = link_1.Keywords;
comments = link_1.Comments;
for i = 1:length(comments)
 link_2.addComment(comments(i).Text);
end

% Delete link_1
remove(link_1);

Version History
Introduced in R2019b

See Also
setDestination

 setSource

3-65

source
Class: slreq.Link
Package: slreq

Get link source

Syntax
src = source(myLink)

Description
src = source(myLink) returns a link source of the link myLink.

Input Arguments
myLink — Link object
slreq.Link object

Link, specified as an slreq.Link object.

Output Arguments
src — Link source
struct

Link source, returned as a MATLAB structure that contains these fields:

• domain
• artifact
• id

Examples

Get a Link Source

This example shows how to get a link source from a link object.

Load the crs_req requirement files, which contain links for a cruise control system.

slreq.load("crs_req");
slreq.load("crs_req_func_spec");

Find the crs_req link set.

myLinkSet = slreq.find(Type="LinkSet",Description="crs_req");

Get the links from the link set.

3 Methods

3-66

myLinks = getLinks(myLinkSet)

myLinks=1×12 object
 1x12 Link array with properties:

 Type
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedOn
 ModifiedBy
 Revision
 SID
 Comments

Get the link source structure for one of the links.

src = source(myLinks(1));

Convert the link source structure to an object.

srcObj = slreq.structToObj(src);

Tips
• You can use slreq.structToObj to convert the link source structure to an object.

Version History
Introduced in R2018a

See Also
slreq.Link | destination | linkSet | slreq.structToObj

 source

3-67

addAttribute
Class: slreq.LinkSet
Package: slreq

Add custom attribute to link set

Syntax
addAttribute(myLinkSet,name,type)
addAttribute(myLinkSet,name,'Checkbox','DefaultValue',value)
addAttribute(myLinkSet,name,'Combobox','List',options)
addAttribute(myLinkSet, ___ ,'Description',descr)

Description
addAttribute(myLinkSet,name,type) adds a custom attribute with the name specified by name
and the custom attribute type specified by type to the link set myLinkSet.

addAttribute(myLinkSet,name,'Checkbox','DefaultValue',value) adds a Checkbox
custom attribute with the name specified by name and the default value specified by value to the link
set myLinkSet.

addAttribute(myLinkSet,name,'Combobox','List',options) adds a Combobox custom
attribute with name specified by name, and the list options specified by options to the link set
myLinkSet.

addAttribute(myLinkSet, ___ ,'Description',descr) adds a custom attribute with the name
specified by name, the type specified by type, and the description specified by descr to the link set
myLinkSet.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

type — Custom attribute type
'Edit' | 'Checkbox' | 'Combobox' | 'DateTime'

Custom attribute type, specified as a character array. The valid custom attribute types are 'Edit',
'Checkbox', 'Combobox', and 'DateTime'.

descr — Custom attribute description
character array

3 Methods

3-68

Custom attribute description, specified as a character array.

value — Checkbox default value
false (default) | true

Checkbox default value, specified as a logical 1 (true) or 0 (false).

options — Combobox list options
cell array

Combobox list options, specified as a cell array. The list of options is valid only if 'Unset' is the first
entry. 'Unset' indicates that the user hasn't chosen an option from the combo box. If the list does
not start with 'Unset', it will be automatically appended as the first entry.
Example: {'Unset','A','B','C'}

Examples

Add Custom Attribute to Link Set

This example shows how to add a custom attribute to of all four available types, Edit, Checkbox,
Combobox, and DateTime, and how to add a custom attribute with a description.

Setup

Open the CruiseRequirementsExample project. Load the crs_req_func_spec requirement set.

slreqCCProjectStart;
rs = slreq.load("crs_req_func_spec");

Get a handle for the crs_controller link set by finding the referenced requirement with summary
Driver Switch Request Handling, getting the incoming link for that requirement, and then
getting the link set that the link belongs to.

req = find(rs,"Summary","Driver Switch Request Handling");
myLink = inLinks(req);
ls = linkSet(myLink);

Add an Edit Custom Attribute

Add an Edit custom attribute to the link set. Confirm that the attribute added by using
inspectAttribute.

addAttribute(ls,"MyEditAttribute","Edit");
atrb = inspectAttribute(ls,"MyEditAttribute")

atrb = struct with fields:
 name: "MyEditAttribute"
 type: Edit
 description: ''

Add a Checkbox Custom Attribute

Add a Checkbox custom attribute with the default value true. Confirm that the attribute was added
successfully by using inspectAttribute.

 addAttribute

3-69

addAttribute(ls,"MyCheckbox","Checkbox","DefaultValue",true);
atrb2 = inspectAttribute(ls,"MyCheckbox")

atrb2 = struct with fields:
 name: "MyCheckbox"
 type: Checkbox
 description: ''
 default: 1

Add a Combobox Custom Attribute

Add a ComboBox custom attribute with the options Unset, A, B, and C. Confirm that the attribute was
added successfully by using inspectAttribute.

addAttribute(ls,"MyCombobox","Combobox","List",["Unset","A","B","C"]);
atrb3 = inspectAttribute(ls,"MyCombobox")

atrb3 = struct with fields:
 name: "MyCombobox"
 type: Combobox
 description: ''
 list: {'Unset' 'A' 'B' 'C'}

Add a DateTime Custom Attribute

Add a DateTime custom attribute. Confirm that the attribute was added successfully by using
inspectAttribute.

addAttribute(ls,"MyDateTime","DateTime");
atrb4 = inspectAttribute(ls,"MyDateTime")

atrb4 = struct with fields:
 name: "MyDateTime"
 type: DateTime
 description: ''

Add a Custom Attribute with a Description

Add an Edit custom attribute. Add a description to the custom attribute. Confirm that the attribute
was added successfully by using inspectAttribute.

addAttribute(ls,"MyEditAttribute2","Edit","Description",...
 "You can enter text as the custom attribute value.");
atrb5 = inspectAttribute(ls,"MyEditAttribute2")

atrb5 = struct with fields:
 name: "MyEditAttribute2"
 type: Edit
 description: 'You can enter text as the custom attribute value.'

Add a ComboBox custom attribute with the options Unset, A, B, and C. Add a description to the
custom attribute. Confirm that the attribute was added successfully by using inspectAttribute.

3 Methods

3-70

addAttribute(ls,"MyCombobox2","Combobox","List",["Unset","A","B","C"],"Description",...
 "This combo box attribute has 4 options.");
atrb6 = inspectAttribute(ls,"MyCombobox2")

atrb6 = struct with fields:
 name: "MyCombobox2"
 type: Combobox
 description: 'This combo box attribute has 4 options.'
 list: {'Unset' 'A' 'B' 'C'}

Version History
Introduced in R2020b

See Also
slreq.LinkSet | deleteAttribute | inspectAttribute | updateAttribute

Topics
“Manage Custom Attributes for Links by Using the Requirements Toolbox API”

 addAttribute

3-71

createTextRange
Class: slreq.LinkSet
Package: slreq

Create line ranges

Syntax
cr = createTextRange(myLinkSet,lines)
cr = createTextRange(myLinkSet,blockSID,lines)

Description
cr = createTextRange(myLinkSet,lines) creates a line range associated with the lines of
code, lines, in the MATLAB or external code file associated with the link set specified by
myLinkSet.

cr = createTextRange(myLinkSet,blockSID,lines) creates a line range in the MATLAB
Function block specified by blockSID.

Input Arguments
myLinkSet — Link set
slreq.LinkSet

Link set, specified as an slreq.LinkSet object.

lines — Start and end line numbers
scalar double | double array

Start and end line numbers for the line range, specified as a double array of the form [start end]
or a scalar double.
Example: [1 4], 1

blockSID — MATLAB Function block SID
string scalar | character vector

MATLAB Function block SID, specified as a string scalar or character vector.
Example: "30"

Output Arguments
lr — Line range
slreq.TextRange object

Line range, returned as an slreq.TextRange object.

3 Methods

3-72

Examples

Create Line Ranges for Link Sets

This example shows how to create an slreq.TextRange object for a link set.

Open the myAdd code file.

open("myAdd.m");

Get a handle to the myAdd link set.

myLinkSet = slreq.find(Type="LinkSet",Description="myAdd");

Create an slreq.TextRange object that corresponds to line numbers 1 and 2 in the myAdd function.

cr = createTextRange(myLinkSet,[1 2]);

Create Line Ranges in MATLAB Function Blocks for Link Sets

This example shows how to create slreq.TextRange objects in MATLAB Function blocks and link
the line ranges to requirements.

Open the myAddModel Simulink® model.

model = "myAddModel";
open_system(model);

Get the SID of the MATLAB Function block.

block = "myAddModel/MATLAB Function";
SID = get_param(block,"SID")

SID =
'8'

Get a handle to the myAddModel link set.

myLinkSet = slreq.find(Type="LinkSet",Description="myAddModel");

Create an slreq.TextRange object that corresponds to line number 2 in the myAdd MATLAB
Function block.

cr = createTextRange(myLinkSet,SID,2);

Load the myAddRequirements requirement set.

rs = slreq.load("myAddRequirements");

Get a handle to the requirement with the summary Add u and v.

req = find(rs,Summary="Add u and v");

Create a link from the slreq.TextRange object to the requirement.

 createTextRange

3-73

myLink = slreq.createLink(cr,req);

Tips
• You can also use slreq.createTextRange to create code range objects.

Version History
Introduced in R2022b

See Also
slreq.LinkSet | slreq.TextRange | slreq.createTextRange

Topics
“Requirements Traceability for MATLAB Code”

3 Methods

3-74

deleteAttribute
Class: slreq.LinkSet
Package: slreq

Delete custom attribute from link set

Syntax
deleteAttribute(myLinkSet,name,'Force',true)
deleteAttribute(myLinkSet,name,'Force',false)

Description
deleteAttribute(myLinkSet,name,'Force',true) deletes the custom attribute specified by
name from the link set myLinkSet, even if the custom attribute is used by links in the link set.

deleteAttribute(myLinkSet,name,'Force',false) deletes the custom attribute specified by
name from the link set myLinkSet only if the custom attribute is not used by links in the link set.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

Examples

Delete Custom Attribute

This example shows how to delete a custom attribute.

Load the crs_req requirement files, which contain links for a cruise control system. Find a link set in
the files.

slreq.load('crs_req');
ls = slreq.find('Type','LinkSet');

Delete the custom attribute named Target Speed Change from the link set. Because the Target
Speed Change attribute is used by links, it can only be deleted by setting Force to true.Confirm
that it was deleted successfully by accessing the CustomAttributeNames property for the link set.

deleteAttribute(ls,'Target Speed Change','Force',true)
atrb1 = ls.CustomAttributeNames

 deleteAttribute

3-75

atrb1 =

 0x0 empty cell array

Only Delete Custom Attribute if the Attribute is Unused

Add an Edit custom attribute to the link set. The attribute is unused because the value is not set for
any links. Confirm that it was added successfully by accessing the CustomAttributeNames property
for the link set.

addAttribute(ls,'MyEditAttribute','Edit')
atrb2 = ls.CustomAttributeNames

atrb2 = 1x1 cell array
 {'MyEditAttribute'}

If you set Force to false, you can delete the attribute only if the attribute is unused. If the attribute
is used by links, then an error will occur. Confirm the deletion by accessing the
CustomAttributeNames property for the link set.

deleteAttribute(ls,'MyEditAttribute','Force',false)
atrb3 = ls.CustomAttributeNames

atrb3 =

 0x0 empty cell array

Cleanup

Clean up commands. Clear the open requirement sets, link sets, and open models without saving
changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
slreq.LinkSet | addAttribute | inspectAttribute | updateAttribute

Topics
“Manage Custom Attributes for Links by Using the Requirements Toolbox API”

3 Methods

3-76

exportToVersion
Class: slreq.LinkSet
Package: slreq

Export link set to previous MATLAB version

Syntax
tf = exportToVersion(myLinkSet,name,version)

Description
tf = exportToVersion(myLinkSet,name,version) saves a copy of the link set myLinkSet as
a new link set file that is compatible with the MATLAB version specified by version and with file
name specified by name. The method returns 1 if the file is exported. The file is saved in the current
folder.

Note You can only export link sets to version R2017b or later.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

name — File name for exported link set
string scalar | character vector

File name for exported link set, specified as a string scalar or character vector.

version — MATLAB version to export to
string scalar | character vector

MATLAB version to export to, specified as a string scalar or character vector.

You can export to version R2017b or later.
Example: tf = exportToVersion(myLinkSet,"newLinkSet","R2021a")

Output Arguments
tf — Export success status
0 | 1

Export success status, returned as a logical 1 (true) or 0 (false).
Data Types: logical

 exportToVersion

3-77

Examples

Export a Link Set to a Previous Version of MATLAB

This example shows how to export a link set to a file that is compatible with a previous version of
MATLAB.

Open the CruiseRequirementsExample project. Load the crs_req requirement set, which also
loads the crs_req link set.

slreqCCProjectStart;
slreq.load("crs_req");

Find the crs_req link set and assign it to a variable.

myLinkSet = slreq.find("Type","LinkSet","Name","crs_req")

myLinkSet =
 LinkSet with properties:

 Description: ''
 Filename: 'C:\TEMP\Bdoc22b_2054784_11640\mlx_to_docbook1\bml.batserve.041884\MATLAB\Projects\examples\CruiseRequirementsExample8\documents\crs_req.slmx'
 Artifact: 'C:\TEMP\Bdoc22b_2054784_11640\mlx_to_docbook1\bml.batserve.041884\MATLAB\Projects\examples\CruiseRequirementsExample8\documents\crs_req.slreqx'
 Domain: 'linktype_rmi_slreq'
 Revision: 5
 Dirty: 0
 CustomAttributeNames: {}

Export the link set to a new file that is compatible with MATLAB R2020a. Name the new file
crs_req_2020a.

tf = exportToVersion(myLinkSet,"crs_req_2020a","R2020a")

tf = logical
 1

Tips
• If the link set contains links to Model-Based Design artifacts, you might also need to export the

artifacts to a previous version for the links to be resolved. For more information, see “Export Link
Sets”.

• You can export a requirement set to a previous version with slreq.ReqSet.exportToVersion.

Version History
Introduced in R2018a

See Also
slreq.LinkSet | slreq.ReqSet.exportToVersion

3 Methods

3-78

Topics
“Export Requirement Sets and Link Sets to Previous Versions of Requirements Toolbox”

 exportToVersion

3-79

find
Class: slreq.LinkSet
Package: slreq

Find links in link set with matching attribute values

Syntax
myLinks = find(myLinkSet,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN)

Description
myLinks = find(myLinkSet,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN) finds and returns slreq.Link objects in the link set myLinkSet that match the
properties specified by PropertyName and PropertyValue.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

PropertyName — Link property
character vector

Link property name, specified as a character vector. See the valid property names in the properties
section of slreq.Link.
Example: 'Type','Keywords','SID'

PropertyValue — Link property value
character vector | character array | datetime value | scalar | logical | structure array

Link property value, specified as a character vector, character array, datetime value, scalar,
logical, or structure array. The data type depends on the specified propertyName. See the valid
property values in the properties section of slreq.Link.
Example: 'Type','Keywords','SID'

Output Arguments
myLinks — Link
slreq.Link object

Link or link array, specified as an slreq.Link object.

Examples

3 Methods

3-80

Find a Link in a Requirement Set

This example shows how to find a link in a link set that matches the specified property value.

Open the CruiseRequirementsExample project. Load the crs_req requirement set, which also
loads the crs_req link set. Then, find the crs_req link set.

slreqCCProjectStart;
slreq.load("crs_req");
ls = slreq.find("Type","LinkSet","Name","crs_req")

ls =
 LinkSet with properties:

 Description: ''
 Filename: 'C:\TEMP\Bdoc22b_2054784_11640\mlx_to_docbook1\bml.batserve.041884\MATLAB\Projects\examples\CruiseRequirementsExample9\documents\crs_req.slmx'
 Artifact: 'C:\TEMP\Bdoc22b_2054784_11640\mlx_to_docbook1\bml.batserve.041884\MATLAB\Projects\examples\CruiseRequirementsExample9\documents\crs_req.slreqx'
 Domain: 'linktype_rmi_slreq'
 Revision: 5
 Dirty: 0
 CustomAttributeNames: {}

Find a link that matches the specified SID.

myLink = find(ls,"SID","3")

myLink =
 Link with properties:

 Type: 'Derive'
 Description: '#8: Set Switch Detection'
 Keywords: {}
 Rationale: ''
 CreatedOn: 20-May-2017 13:14:40
 CreatedBy: 'itoy'
 ModifiedOn: 02-Feb-2018 14:28:04
 ModifiedBy: 'itoy'
 Revision: 4
 SID: 3
 Comments: [0x0 struct]

Find all links that are modified in the specified revision.

myLinks = find(ls,"Revision","4")

myLinks=1×12 object
 1x12 Link array with properties:

 Type
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedOn
 ModifiedBy
 Revision

 find

3-81

 SID
 Comments

Find a link that matches the specified SID and revision.

myLink2 = find(ls,"SID","8","Revision","4")

myLink2 =
 Link with properties:

 Type: 'Derive'
 Description: '#12: Increment Short Switch Detection'
 Keywords: {}
 Rationale: ''
 CreatedOn: 20-May-2017 13:15:45
 CreatedBy: 'itoy'
 ModifiedOn: 02-Feb-2018 14:28:04
 ModifiedBy: 'itoy'
 Revision: 4
 SID: 8
 Comments: [0x0 struct]

Version History
Introduced in R2018a

See Also
slreq.LinkSet | slreq.find

3 Methods

3-82

getLinks
Class: slreq.LinkSet
Package: slreq

Get links from link set

Syntax
lks = getLinks(lkset)

Description
lks = getLinks(lkset) returns an array lks of Links from lkset, a LinkSet.

Input Arguments
lkset — Link set
LinkSet

LinkSet from which to get links.
Example: LinkSet with properties:

Output Arguments
lks — Links
Link | Link array

Links in the link set.

Examples
Get Links from a Link Set

load_system('reqs_validation_property_proving_original_model');
rq = slreq.load('original_thrust_reverser_requirements.slreqx');
lk = slreq.load('reqs_validation_property_proving_original_model.slmx');

sl = getLinks(lk);

Version History
Introduced in R2020a

See Also
sources

 getLinks

3-83

getRegisteredReqSets
Class: slreq.LinkSet
Package: slreq

Get requirement sets registered in link set

Syntax
registeredReqSets = getRegisteredReqSets(myLinkSet)

Description
registeredReqSets = getRegisteredReqSets(myLinkSet) returns a cell array of the file
names of the requirement sets registered to the link set myLinkSet.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

Output Arguments
registeredReqSets — Registered requirement set file names
cell array

File names of requirement sets registered in the link set, returned as a cell array.

Examples

Update Requirement Sets Registered in Link Set

This example shows how to get and update the requirement sets registered in a link set.

Open the Requirements Definition for a Cruise Control Model project.

slreqCCProjectStart;

Load the crs_req requirement set, which describes a cruise control system. This action also loads
the crs_req link set and the crs_req_func_spec requirement set.

slreq.load("crs_req");

Find the crs_req link set and the crs_req_func_spec requirement set.

myLinkSet = slreq.find("Type","LinkSet","Name","crs_req");
rs = slreq.find("Type","ReqSet","Name","crs_req_func_spec");

3 Methods

3-84

Get the requirement sets registered in the crs_req link set.

registeredReqSets = getRegisteredReqSets(myLinkSet);

Get the links from the crs_req link set. Remove all of the links from the crs_req link set and close
the crs_req_func_spec requirement set.

links = getLinks(myLinkSet);
for i = 1:numel(links)
 remove(links(i));
end
close(rs);

Update the requirement sets registered to the link set crs_req. Confirm that the requirement set
crs_req_func_spec is not registered in the link set crs_req by getting the currently registered
requirement sets.

updateRegisteredReqSets(myLinkSet)
registeredReqSets = getRegisteredReqSets(myLinkSet)

registeredReqSets =

 0x0 empty cell array

Cleanup

Clear the open requirement sets and link sets. Close the Requirements Definition for a Cruise Control
Model project.

slreq.clear;
close(currentProject);

Tips
• When you create a link to a requirement, the requirement set of the requirement becomes

registered to the link set of the link. If you delete the link to the requirement, you must manually
unregister the requirement set from the link set. You can update the registered requirement sets
by using updateRegisteredReqSets.

• You can register a requirement set without creating a link by opening a requirement set in the
Requirements Perspective in the Simulink model editor.

Version History
Introduced in R2021b

See Also
slreq.LinkSet | updateRegisteredReqSets

 getRegisteredReqSets

3-85

getTextRange
Class: slreq.LinkSet
Package: slreq

Get line ranges

Syntax
cr = getTextRange(myLinkSet,lines)
cr = getTextRange(myLinkSet,blockSID,lines)

Description
cr = getTextRange(myLinkSet,lines) returns the line ranges associated with the lines of code,
lines, in the file associated with the link set specified by myLinkSet.

Note You must open the file in the MATLAB Editor before using this function.

cr = getTextRange(myLinkSet,blockSID,lines) returns the line range associated with the
lines in the MATLAB Function block specified by blockSID.

Note You must open the model in Simulink before using this function.

Input Arguments
myLinkSet — Link set
slreq.LinkSet

Link set, specified as an slreq.LinkSet object.

lines — Start and end line numbers
scalar double | double array

Start and end line numbers for the line range, specified as a double array of the form [start end]
or a scalar double.
Example: [1 4], 1

blockSID — MATLAB Function block SID
string scalar | character vector

MATLAB Function block SID, specified as a string scalar or character vector.
Example: "30"

3 Methods

3-86

Output Arguments
lr — Line range
slreq.TextRange array

Line range, returned as an array of slreq.TextRange objects.

Examples

Get Line Ranges in Link Sets

This example shows how to get slreq.TextRange objects in a link set.

Open the myAdd code file.

open("myAdd.m");

Get a handle to the myAdd link set.

myLinkSet = slreq.find(Type="LinkSet",Description="myAdd");

Get the slreq.TextRange object that corresponds to line number 3 in the file associated with the
myAdd link set.

cr = getTextRange(myLinkSet,3);

You can also get the code ranges by using getTextRanges.

Get Line Ranges in MATLAB Function Blocks for Link Sets

This example shows how to get slreq.TextRange objects in MATLAB Function blocks for link sets.

Open the myAddModel Simulink® model.

model = "myAddModel";
open_system(model);

Get the SID of the MATLAB Function block.

block = "myAddModel/MATLAB Function";
SID = get_param(block,"SID")

SID =
'8'

Get a handle to the myAddModel link set.

myLinkSet = slreq.find(Type="LinkSet",Description="myAddModel");

Get the slreq.TextRange object associated with the first line of the MATLAB Function block.

cr = getTextRange(myLinkSet,SID,1);

You can also get the slreq.TextRange object by using getTextRanges.

 getTextRange

3-87

Tips
• You can also use slreq.getTextRange or getTextRanges to get code range objects.

Version History
Introduced in R2022b

See Also
slreq.LinkSet | slreq.TextRange | getTextRanges | slreq.getTextRange |
slreq.createTextRange

Topics
“Requirements Traceability for MATLAB Code”

3 Methods

3-88

getTextRanges
Class: slreq.LinkSet
Package: slreq

Get lines ranges that span multiple lines

Syntax
cr = getTextRanges(myLinkSet,lines)
cr = getTextRanges(myLinkSet,blockSID,lines)

Description
cr = getTextRanges(myLinkSet,lines) returns the line ranges associated with the lines of
code, lines, in the file associated with the link set specified by myLinkSet.

Note You must open the file in the MATLAB Editor before using this function.

cr = getTextRanges(myLinkSet,blockSID,lines) returns the code ranges associated with
the lines in the MATLAB Function block specified by blockSID.

Note You must open the model in Simulink before using this function.

Input Arguments
myLinkSet — Link set
slreq.LinkSet

Link set, specified as an slreq.LinkSet object.

lines — Start and end line numbers
scalar double | double array

Start and end line numbers for the line range, specified as a double array of the form [start end]
or a scalar double.
Example: [1 4], 1

blockSID — MATLAB Function block SID
string scalar | character vector

MATLAB Function block SID, specified as a string scalar or character vector.
Example: "30"

 getTextRanges

3-89

Output Arguments
lr — Line range
slreq.TextRange array

Line range, returned as an array of slreq.TextRange objects.

Examples

Get Line Ranges in Link Sets

This example shows how to get slreq.TextRange objects in a link set.

Open the myAdd code file.

open("myAdd.m");

Get a handle to the myAdd link set.

myLinkSet = slreq.find(Type="LinkSet",Description="myAdd");

Get the slreq.TextRange object that corresponds to line number 3 in the file associated with the
myAdd link set.

cr = getTextRange(myLinkSet,3);

You can also get the code ranges by using getTextRanges.

Get Line Ranges in MATLAB Function Blocks for Link Sets

This example shows how to get slreq.TextRange objects in MATLAB Function blocks for link sets.

Open the myAddModel Simulink® model.

model = "myAddModel";
open_system(model);

Get the SID of the MATLAB Function block.

block = "myAddModel/MATLAB Function";
SID = get_param(block,"SID")

SID =
'8'

Get a handle to the myAddModel link set.

myLinkSet = slreq.find(Type="LinkSet",Description="myAddModel");

Get the slreq.TextRange object associated with the first line of the MATLAB Function block.

cr = getTextRange(myLinkSet,SID,1);

You can also get the slreq.TextRange object by using getTextRanges.

3 Methods

3-90

Tips
• You can also use getTextRange or slreq.getTextRange to get code ranges.

Version History
Introduced in R2022b

See Also
slreq.LinkSet | slreq.TextRange | getTextRange | slreq.createTextRange

Topics
“Requirements Traceability for MATLAB Code”

 getTextRanges

3-91

importProfile
Class: slreq.LinkSet
Package: slreq

Assign profile to ink set

Syntax
importProfile(myLinkSet,fileName)

Description
importProfile(myLinkSet,fileName) assigns the profile, fileName, to the link set myLinkSet.

Input Arguments
myLinkSet — Link set
slreq.LinkSet

Link set, specified as an slreq.LinkSet object.

fileName — Profile file name
string scalar | character vector

Profile file name, specified as a string scalar or character vector.
Example: "myProfile.xml"

Examples

Assign a Profile to a Link Set

This example shows how to assign a profile to a link set.

Load the myAddRequirements requirement set, which also loads the myAddProfile link set.

rs = slreq.load("myAddRequirements");

Find the myAddProfile link set.

myLinkSet = slreq.find(Type="LinkSet",Description="myAdd");

Assign the profile to the link set.

importProfile(myLinkSet,"myAddLinksProfile2")
fileName = profiles(myLinkSet)

fileName = 1×2 cell
 {'myAddLinksProfile.xml'} {'myAddLinksProfile2.xml'}

3 Methods

3-92

Tips
• To assign profiles to requirement sets, use slreq.ReqSet.importProfile.

Version History
Introduced in R2022b

See Also
Profile Editor | slreq.LinkSet | profiles | removeProfile

 importProfile

3-93

inspectAttribute
Class: slreq.LinkSet
Package: slreq

Get information about link set custom attribute

Syntax
atrb = inspectAttribute(myLinkSet,name)

Description
atrb = inspectAttribute(myLinkSet,name) returns a structure with information about the
custom attribute name specified by name in the link set myLinkSet.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

Output Arguments
atrb — Custom attribute information
struct

Custom attribute information, returned as a struct.

Examples

Get Link Set Custom Attribute Information

This example shows how to get information about a link set custom attribute.

Load the crs_req requirement files, which describes a cruise control system. Find a link set from the
files and assign it to a variable.

slreq.load('crs_req');
ls = slreq.find('Type','LinkSet');

The custom attribute Target Speed Change tracks whether linked requirements are related to
incrementing or decrementing the speed, or not related at all. Get information about this custom
attribute.

3 Methods

3-94

atrb = inspectAttribute(ls,'Target Speed Change')

atrb = struct with fields:
 name: 'Target Speed Change'
 type: Combobox
 description: 'Tracks if linked requirements are related to incrementing or decrementing speed. Unset if unrelated to speed change.'
 list: {'Unset' 'Increment' 'Decrement'}

Cleanup

Clear the open requirement sets, link sets, and open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
slreq.LinkSet | addAttribute | updateAttribute | deleteAttribute

Topics
“Manage Custom Attributes for Links by Using the Requirements Toolbox API”

 inspectAttribute

3-95

profiles
Class: slreq.LinkSet
Package: slreq

Get profiles assigned to link set

Syntax
fileNames = profiles(myLinkSet)

Description
fileNames = profiles(myLinkSet) returns the file names of the profiles assigned to the link set
myLinkSet.

Input Arguments
myLinkSet — Link set
slreq.LinkSet

Link set, specified as an slreq.LinkSet object.

Output Arguments
fileNames — Profile file names
cell array

Profile file names, returned as a cell array of character vectors.

Examples

Get and Remove Profiles from Link Sets

This example shows how to get the profiles assigned to a link set and how to remove a profile.

Load the myAddRequirements requirement set, which also loads the myAddProfile link set.

rs = slreq.load("myAddRequirements");

Find the myAddProfile link set.

myLinkSet = slreq.find(Type="LinkSet",Description="myAdd");

Get the profiles assigned to the link set.

fileName = profiles(myLinkSet)

fileName = 1×1 cell array
 {'myAddLinksProfile.xml'}

3 Methods

3-96

Remove the profile from the link set.

tf = removeProfile(myLinkSet,fileName{1})

tf = logical
 1

Tips
• To get profiles assigned to requirement sets, use slreq.ReqSet.profiles.

Version History
Introduced in R2022b

See Also
slreq.LinkSet | importProfile | removeProfile

 profiles

3-97

redirectLinksToImportedReqs
Class: slreq.LinkSet
Package: slreq

Redirect link destination from external document to imported requirement set

Syntax
count = redirectLinksToImportedReqs(myLinkSet,rs)

Description
count = redirectLinksToImportedReqs(myLinkSet,rs) redirects the link destinations for
the direct links in the link set myLinkSet from the requirements in an external document to the
imported referenced requirements in the requirement set rs.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Output Arguments
count — Number of updated links
character vector

Number of updated slreq.Link objects in the link set, returned as a character vector.

Examples

Redirect Direct Links to Imported Requirements Programmatically

This example shows how to programmatically redirect the link destinations for direct links from an
external document to a corresponding imported requirement.

Open the FuelSysWithReqLinks model. Find the link set associated with the model.

open_system("FuelSysWithReqLinks.slx")
myLinkSet = slreq.find("Type","LinkSet","Name","FuelSysWithReqLinks");

The model contains direct links to these documents:

3 Methods

3-98

• FuelSysDesignDescription.docx
• FuelSysRequirementsSpecification.docx
• FuelSysTestScenarios.xlsx

Redirect Links to Imported References

Load the requirement set FuelSysRequirements. The requirement set contains imported
referenced requirements from the documents listed above. The import process is described in
“Migrating Requirements Management Interface Data to Requirements Toolbox”.

rs = slreq.load("FuelSysRequirements.slreqx");

Redirect the link destination for the direct links in the link set myLinkSet to the imported referenced
requirements.

count = redirectLinksToImportedReqs(myLinkSet,rs)

count = 13

Cleanup

Clear the open requirement sets and link sets. Close all open models.

slreq.clear;
bdclose all;

Tips
• You can also redirect the links to imported requirements in the Requirements Editor or

Requirements Perspective. For more information, see Update Model Link Destinations in
“Migrating Requirements Management Interface Data to Requirements Toolbox”.

Version History
Introduced in R2018a

See Also
Requirements Editor | slreq.LinkSet

Topics
“Use Command-Line API to Update or Repair Requirements Links”
“Migrating Requirements Management Interface Data to Requirements Toolbox”

 redirectLinksToImportedReqs

3-99

removeProfile
Class: slreq.LinkSet
Package: slreq

Remove profile from link set

Syntax
tf = removeProfile(myLinkSet,fileName)

Description
tf = removeProfile(myLinkSet,fileName) removes the profile, fileName, from the link set
myLinkSet.

Note If you remove a profile, Requirements Toolbox applies these changes to links that used a
stereotype from the profile:

• Sets the link type to Relate
• Removes the stereotype properties and deletes the stereotype property values

Input Arguments
myLinkSet — Link set
slreq.LinkSet

Link set, specified as an slreq.LinkSet object.

fileName — Profile file name
string scalar | character vector

Profile file name, specified as a string scalar or character vector.
Example: "myProfile.xml"

Output Arguments
tf — Remove success status
0 | 1

Remove success status, returned as a 1 or 0 of data type logical.

Examples

3 Methods

3-100

Get and Remove Profiles from Link Sets

This example shows how to get the profiles assigned to a link set and how to remove a profile.

Load the myAddRequirements requirement set, which also loads the myAddProfile link set.

rs = slreq.load("myAddRequirements");

Find the myAddProfile link set.

myLinkSet = slreq.find(Type="LinkSet",Description="myAdd");

Get the profiles assigned to the link set.

fileName = profiles(myLinkSet)

fileName = 1×1 cell array
 {'myAddLinksProfile.xml'}

Remove the profile from the link set.

tf = removeProfile(myLinkSet,fileName{1})

tf = logical
 1

Tips
• To remove profiles from requirement sets, use slreq.ReqSet.removeProfile

Version History
Introduced in R2022b

See Also
slreq.LinkSet | profiles | importProfile

 removeProfile

3-101

save
Class: slreq.LinkSet
Package: slreq

Save link set

Syntax
save(lks)
save(lks, filePath)

Description
save(lks) saves the link set lks by using its file name.

save(lks, filePath) saves the link set lks and updates its Name and Filename properties.

Input Arguments
lks — Link set file
slreq.LinkSet object

Link set file, specified as an slreq.LinkSet object.

filePath — File name and path
character vector

The file name and path of the link set, specified as a character vector.
Example: 'C:\MATLAB\myLinkSet.slmx'

Examples
Save Link Set File

Load a link set associated with a Simulink model called fuelsys. Save the link set.

myLinkSet = slreq.load('fuelsys.slx');
save(myLinkSet);

Save the link set to a new file.

save(myLinkSet,'C:\MATLAB\Files\MyLinkSet1.slmx');

Version History
Introduced in R2018a

3 Methods

3-102

See Also
slreq.LinkSet | sources

 save

3-103

sources
Class: slreq.LinkSet
Package: slreq

Get link sources

Syntax
linkSetSources = sources(lks)

Description
linkSetSources = sources(lks) returns an array of structures linkSetSources that contains
the link sources of all the links in the link set lks.

Input Arguments
lks — Link set
slreq.LinkSet object

Instance of an slreq.LinkSet object.

Output Arguments
linkSetSources — Link set sources
structure

Link set source data, returned as a MATLAB structure.

Examples
Get Link Sources

Load a link set associated with a Simulink model called fuelsys. Get the sources for the link set.

myLinkSet = slreq.load('fuelsys.slx');
mySources = sources(myLinkSet)

mySources =

 1×16 struct array with fields:

 domain
 artifact
 id

Version History
Introduced in R2018a

3 Methods

3-104

See Also
slreq.LinkSet | save

 sources

3-105

updateAttribute
Class: slreq.LinkSet
Package: slreq

Update information for link set custom attribute

Syntax
updateAttribute(myLinkSet,atrb,Name,Value)

Description
updateAttribute(myLinkSet,atrb,Name,Value) updates the custom attribute specified by
atrb with properties specified by the name-value pairs Name and Value in the link set myLinkSet.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

atrb — Custom attribute name
character array

Custom attribute name, specified as a character array.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Description','My new description.'

Description — Custom attribute description
character array

Custom attribute description, specified as the comma-separated pair consisting of 'Description'
and a character array.
Example: 'Description','My new description.'

List — Combobox list options
cell array

Combobox list options, specified as the comma-separated pair consisting of 'List' and a cell array.
The list of options is valid only if 'Unset' is the first entry. 'Unset' indicates that the user hasn't
chosen an option from the combo box. If the list does not start with 'Unset', it will be automatically
appended as the first entry.

3 Methods

3-106

Example: 'List',{'Unset','A','B','C'}

Note You can only use this name-value pair when the Type property of the custom attribute that
you're updating is Combobox.

Examples

Update Link Set Custom Attribute Information

This example shows how to update custom attribute information for a link set.

Load the crs_req requirement files, which describe a cruise control system. Find a link set in the
files and assign it to a variable.

slreq.load('crs_req');
ls = slreq.find('Type','LinkSet');

Update an Edit Custom Attribute

Add an Edit custom attribute that has a description to the link set. Get the attribute information with
inspectAttribute.

addAttribute(ls,'MyEditAttribute','Edit','Description','Original attribute.');
inspectAttribute(ls,'MyEditAttribute')

ans = struct with fields:
 name: 'MyEditAttribute'
 type: Edit
 description: 'Original attribute.'

Update the custom attribute with a new description. Confirm the change by getting the attribute
information with inspectAttribute.

updateAttribute(ls,'MyEditAttribute','Description','Updated attribute.');
inspectAttribute(ls,'MyEditAttribute')

ans = struct with fields:
 name: 'MyEditAttribute'
 type: Edit
 description: 'Updated attribute.'

Update a Combobox Custom Attribute

Add a Combobox custom attribute with a list of options to the link set. Get the attribute information
with inspectAttribute.

addAttribute(ls,'MyCombobox','Combobox','List',{'Unset','A','B','C'});
inspectAttribute(ls,'MyCombobox')

ans = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: ''

 updateAttribute

3-107

 list: {'Unset' 'A' 'B' 'C'}

Update the custom attribute with a new list of options. Confirm the change by getting the attribute
information with inspectAttribute.

updateAttribute(ls,'MyCombobox','List',{'Unset','1','2','3'});
inspectAttribute(ls,'MyCombobox')

ans = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: ''
 list: {'Unset' '1' '2' '3'}

Update the custom attribute with a new list of options and a new description. Confirm the change by
getting the attribute information with inspectAttribute.

updateAttribute(ls,'MyCombobox','List',{'Unset','A1','B2','B3'},'Description',...
 'Updated attribute with new options.');
inspectAttribute(ls,'MyCombobox')

ans = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: 'Updated attribute with new options.'
 list: {'Unset' 'A1' 'B2' 'B3'}

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
slreq.LinkSet | addAttribute | inspectAttribute | deleteAttribute

Topics
“Manage Custom Attributes for Links by Using the Requirements Toolbox API”

3 Methods

3-108

updateBacklinks
Class: slreq.LinkSet
Package: slreq

Synchronize external navigation links

Syntax
[checked,added] = updateBacklinks(myLinkSet)
[checked,added,removed] = updateBacklinks(myLinkSet,removeUnmatched)

Description
[checked,added] = updateBacklinks(myLinkSet) synchronizes backlinks in external
documents to match links in the link set myLinkSet. The method returns the number of links in the
link set that the method checked and the number of backlinks it added to the external document.

[checked,added,removed] = updateBacklinks(myLinkSet,removeUnmatched) removes
backlinks from the external document that do not have a corresponding link in the link set when
removeUnmatched is true. The method returns the number of backlinks removed from the external
document.

Input Arguments
myLinkSet — Link set
slreq.LinkSet

Link set, specified as an slreq.LinkSet object.

removeUnmatched — Option to remove unmatched backlinks
false (default) | true

Option to remove the unmatched backlinks from the external document, specified as a 1 or 0 of data
type logical.

Output Arguments
checked — Links checked in link set
double

Number of links in the link set that the method checked, returned as a double.

added — Backlinks added in external document
double

Number of backlinks the method added to the external document, returned as a double.

removed — Backlinks removed in external document
double

 updateBacklinks

3-109

Number of backlinks the method removed from the external document, returned as a double.

Examples

Update Backlinks for a Microsoft Word Document

This example shows how to update backlinks for a Microsoft® Word document by using
updateBacklinks.

Open the crs_req_func_spec requirement set. The requirement set has outgoing links to the
crs_req.docx document.

rs = slreq.open("crs_req_func_spec");
myLinkSet = slreq.find(Type="LinkSet",Name="crs_req_func_spec");

Update the backlinks for the external documents associated with the link set. Remove the unmatched
backlinks from the external documents.

[checked,added,removed] = updateBacklinks(myLinkSet,true)

checked = 14

added = 4

removed = 1

Alternatives
App

You can also update backlinks by using the Requirements Editor. For more information, see
“Manage Navigation Backlinks in External Requirements Documents”.

Version History
Introduced in R2022a

See Also
slreq.LinkSet

3 Methods

3-110

updateDocUri
Class: slreq.LinkSet
Package: slreq

Update link destination for direct links

Syntax
count = updateDocUri(myLinkSet,oldID,newID)

Description
count = updateDocUri(myLinkSet,oldID,newID) updates the link destinations for the direct
links in the link set specified by myLinkSet from the external document specified by the resource
identifier (such as a file path or IBM Rational DOORS module ID) oldID to the external document
specified by the resource identifier newID. The method returns the number of links updated.

Note You might have to save the link set, close it, and reopen it for the changes to take effect.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

oldID — Resource identifier for original external document
string scalar | character vector

Resource identifier for the original external document, specified as a string scalar or character
vector.

newID — Resource identifier for new external document
string scalar | character vector

Resource identifier for the new external document to use as the link destinations, specified as a string
scalar or character vector.

Output Arguments
count — Number of updated links
character vector

Number of updated slreq.Link objects in the link set, returned as a character vector.

Examples

 updateDocUri

3-111

Update Direct Links to the URI of a Different External Document

This example shows how to update the link destinations for direct links to the URI of a new
document.

Open the “Link to Requirements in Microsoft Word Documents” example, which uses a model that
has direct links to external documents.

openExample('slrequirements/LinkToRequirementsInMicrosoftWordDocumentsExample');

Open the slvnvdemo_fuelsys_officereq model. Find the associated link set.

open_system("slvnvdemo_fuelsys_officereq.slx")
myLinkSet = slreq.find("Type","LinkSet","Name","slvnvdemo_fuelsys_officereq");

Update Direct Link Destinations

Some of the links in myLinkSet point to slvnvdemo_FuelSys_DesignDescription.docx.
Update the link destinations to point to slvnvdemo_FuelSys_DesignDescription_new.docx.

count = updateDocUri(myLinkSet,"slvnvdemo_FuelSys_DesignDescription.docx","slvnvdemo_FuelSys_DesignDescription_new.docx")

count = 8

Save the link set. Then close the link set and re-open it for the changes to take effect.

tf = save(myLinkSet)

tf = logical
 1

slreq.clear;
myLinkSet = slreq.load("slvnvdemo_fuelsys_officereq.slmx");

Tips
• If you rename or move an external requirements document file, use updateSrcFileLocation to

update the file name or path of the referenced requirements in the requirement set.
• To update the external requirements document resource identifier for referenced requirements

imported from non-file-based domains, use updateSrcArtifactUri.

Version History
Introduced in R2018a

See Also
slreq.LinkSet | setDestination | setSource

Topics
“Use Command-Line API to Update or Repair Requirements Links”

3 Methods

3-112

updateRegisteredReqSets
Class: slreq.LinkSet
Package: slreq

Update requirement sets registered to link set

Syntax
updateRegisteredReqSets(myLinkSet)

Description
updateRegisteredReqSets(myLinkSet) updates the requirement sets registered in the link set
myLinkSet. If a currently registered requirement set has incoming links from the link set
myLinkSet, then it remains registered. Otherwise, the software unregisters the requirement sets
from the link set myLinkSet.

Input Arguments
myLinkSet — Link set
slreq.LinkSet

Link set, specified as an slreq.LinkSet object.

Examples

Update Requirement Sets Registered in Link Set

This example shows how to get and update the requirement sets registered in a link set.

Open the Requirements Definition for a Cruise Control Model project.

slreqCCProjectStart;

Load the crs_req requirement set, which describes a cruise control system. This action also loads
the crs_req link set and the crs_req_func_spec requirement set.

slreq.load("crs_req");

Find the crs_req link set and the crs_req_func_spec requirement set.

myLinkSet = slreq.find("Type","LinkSet","Name","crs_req");
rs = slreq.find("Type","ReqSet","Name","crs_req_func_spec");

Get the requirement sets registered in the crs_req link set.

registeredReqSets = getRegisteredReqSets(myLinkSet);

Get the links from the crs_req link set. Remove all of the links from the crs_req link set and close
the crs_req_func_spec requirement set.

 updateRegisteredReqSets

3-113

links = getLinks(myLinkSet);
for i = 1:numel(links)
 remove(links(i));
end
close(rs);

Update the requirement sets registered to the link set crs_req. Confirm that the requirement set
crs_req_func_spec is not registered in the link set crs_req by getting the currently registered
requirement sets.

updateRegisteredReqSets(myLinkSet)
registeredReqSets = getRegisteredReqSets(myLinkSet)

registeredReqSets =

 0x0 empty cell array

Cleanup

Clear the open requirement sets and link sets. Close the Requirements Definition for a Cruise Control
Model project.

slreq.clear;
close(currentProject);

Tips
• When you create a link to a requirement, the requirement set of the requirement becomes

registered to the link set of the link. You can get the currently registered requirement sets for the
link set by using getRegisteredReqSets. For more information, see “Load Registered
Requirement Sets”.

• You can only unregister a requirement set that is not loaded.
• Loading the link set loads the requirement sets registered to that link set. For more information,

see “Load and Resolve Links”.

Version History
Introduced in R2018a

See Also
slreq.LinkSet | getRegisteredReqSets

Topics
“Create and Store Links”
“Load and Resolve Links”

3 Methods

3-114

add
Class: slreq.Reference
Package: slreq

Add child referenced requirement

Syntax
refChild = add(ref,"Artifact",FileName)
refChild = add(ref,"Artifact",FileName,PropertyName,
PropertyValue,...,PropertyNameN,PropertyValueN)

Description
refChild = add(ref,"Artifact",FileName) adds a child referenced requirement under the
referenced requirement ref that references requirements in the external document, FileName.

refChild = add(ref,"Artifact",FileName,PropertyName,
PropertyValue,...,PropertyNameN,PropertyValueN) adds a child referenced requirement
with properties and property values specified by PropertyName and PropertyValue.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as an slreq.Reference object.

FileName — External requirements document identifier
string scalar | character vector

External requirements document identifier, specified as a string scalar or character vector. Examples
of a document identifier are a Microsoft Office document name or an IBM Rational DOORS Module
unique ID.

PropertyName — Referenced requirement property name
string scalar | character vector

Referenced requirement property name, specified as an string scalar or a character vector.

You can only enter an slreq.Reference property on page 2-65 where the SetAccess attribute is
public.
Example: "Summary"

PropertyValue — Referenced requirement property value
string scalar | character vector

Referenced requirement property value, specified as an string scalar or a character vector.

 add

3-115

Output Arguments
refChild — Referenced child requirement
slreq.Reference object

New referenced child requirement, returned as an slreq.Reference object.

Examples

Add a Child Referenced Requirement under a Referenced Requirement

This example shows how to add a child referenced requirement under a referenced requirement.

Open the CruiseRequirementsExample project and load the crs_req requirement set

slreqCCProjectStart;
rs = slreq.load("crs_req");

Find the top-level referenced requirement with the summary Functional Requirements. Add a
child referenced requirement under that referenced requirement that uses the same external
document as the top-level referenced requirement.

topRef = find(rs,"Summary","Functional Requirements");
childRef = add(topRef,"Artifact",topRef.Artifact)

childRef =
 Reference with properties:

 Id: ''
 CustomId: ''
 Artifact: 'crs_req.docx'
 ArtifactId: ''
 Domain: 'linktype_rmi_word'
 UpdatedOn: 22-Feb-2022 16:01:49
 CreatedOn: 22-Feb-2022 16:01:49
 CreatedBy: ''
 ModifiedBy: ''
 IsLocked: 1
 Summary: ''
 Description: ''
 Rationale: ''
 Keywords: {}
 Type: 'Functional'
 IndexEnabled: 1
 IndexNumber: []
 SID: 32
 FileRevision: 1
 ModifiedOn: 22-Feb-2022 16:01:49
 Dirty: 0
 Comments: [0×0 struct]
 Index: '3.13'

3 Methods

3-116

Tips
• To add a top-level requirement to a requirement set, use slreq.ReqSet.add. To add a

requirement as a child of another requirement, use slreq.Requirement.add. To add a
justification as a child of another justification, use slreq.Justification.add.

Version History
Introduced in R2018a

See Also
slreq.Reference | slreq.ReqSet.add | slreq.Requirement.add |
slreq.Justification.add

 add

3-117

addComment
Class: slreq.Reference
Package: slreq

Add comments to referenced requirements

Syntax
newComment = addComment(ref,myComment)

Description
newComment = addComment(ref,myComment) adds a comment, myComment, to the referenced
requirement ref.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

myComment — Comment text
string scalar | character vector

Comment text to add to the requirement, specified as a string scalar or character vector.

Output Arguments
newComment — Comment
struct

Comment added, returned as a structure containing these fields:

CommentedBy — Name of individual or organization who added comment
character vector

Name of the individual or organization who added the comment, returned as a character vector.

CommentedOn — Date that comment was added
datetime

Date that the comment was added, returned as a datetime object.

CommentedRevision — Comment revision number
int32 object

Comment revision number, returned as an int32 object.

3 Methods

3-118

Text — Comment text
character vector

Comment text, returned as a character vector.

Examples

Add Comments to Referenced Requirements

This example shows how to add comments to referenced requirements.

Load the requirement set crs_req.

rs = slreq.load("crs_req");

Find the first referenced requirement in the set.

ref = find(rs,Index=1);

Add a comment to the referenced requirement.

newComment = addComment(ref,"My new comment.");

Tips
• To add a comment to a requirement, use slreq.Requirement.addComment. To add a comment

to a justification, use slreq.Justification.addComment.

Alternative Functionality
App

You can also add a comment by using the Requirements Editor. Select a referenced requirement
and, in the right pane, under Comments, click Add Comment.

Version History
Introduced in R2018b

See Also
slreq.Reference | getAttribute

 addComment

3-119

children
Class: slreq.Reference
Package: slreq

Find children references

Syntax
childRefs = children(ref)

Description
childRefs = children(ref) returns the child referenced requirements childRefs of the
slreq.Reference object ref.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Reference to a requirement specified as an slreq.Reference object.

Output Arguments
childRef — Child references
slreq.Reference object | slreq.Reference object array

The child referenced requirements belonging to the referenced requirement ref, returned as
slreq.Reference objects.

Examples
Find Child References

% Load a requirement set file and find referenced requirements
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allRefs = find(rs, 'Type', 'Reference')

allRefs =

 1×32 Reference array with properties:

 Keywords
 Artifact
 Id
 Summary
 Description
 SID
 Domain
 SynchronizedOn

3 Methods

3-120

 ModifiedOn

ref1 = allRefs(1);

% Find the children of ref1
childRef = children(ref1)

childRef =

 Reference with properties:

 Keywords: [0×0 char]
 Artifact: 'Req_doc.docx'
 Id: 'R1.1'
 Summary: 'References'
 Description: ''
 SID: 2
 Domain: 'linktype_rmi_word'
 SynchronizedOn: 26-Jul-2015 15:45:22
 ModifiedOn: 27-Jul-2015 12:00:13

Tips
• To get the top-level items in a requirement set, use slreq.ReqSet.children. To get the child

requirements of a requirement use slreq.Requirement.children. To get the child
justifications of a justification, use slreq.Justification.children.

Version History
Introduced in R2018a

See Also
slreq.Reference | slreq.ReqSet | slreq.ReqSet.children |
slreq.Requirement.children | slreq.Justification.children | parent

 children

3-121

find
Class: slreq.Reference
Package: slreq

Find children of parent referenced requirements

Syntax
childRefs = find(ref,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN)

Description
childRefs = find(ref,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN) finds and returns child referenced requirements childRefs of the parent
referenced requirement ref that match the properties specified by PropertyName and
PropertyValue.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as an slreq.Reference object.

PropertyName — Reference property
character vector

Reference property name, specified as a character vector. See the valid property names in the
properties section of slreq.Reference.
Example: 'Type','Keywords','SID'

PropertyValue — Reference property value
character vector | character array | datetime value | scalar | logical | structure array

Reference property value, specified as a character vector, character array, datetime value, scalar,
logical, or structure array. The data type depends on the specified propertyName. See the valid
property values in the properties section of slreq.Reference

Output Arguments
childRefs — Child referenced requirements
slreq.Reference object | slreq.Reference object array

Child referenced requirements, returned as slreq.Reference objects.

Examples

3 Methods

3-122

Find Child Referenced Requirements

This example shows how to find child referenced requirements that match property values.

Load the crs_req requirement file, which describes a cruise control system, and assign it to a
variable. Find the referenced requirement with index 3, as this referenced requirement has child
referenced requirements.

rs = slreq.load('crs_req');
parentRef = find(rs,'Type','Reference','Index','3')

parentRef =
 Reference with properties:

 Id: 'Functional Requirements'
 CustomId: 'Functional Requirements'
 Artifact: 'crs_req.docx'
 ArtifactId: '?Functional Requirements'
 Domain: 'linktype_rmi_word'
 UpdatedOn: 02-Feb-2018 13:23:13
 CreatedOn: NaT
 CreatedBy: ''
 ModifiedBy: ''
 IsLocked: 1
 Summary: 'Functional Requirements'
 Description: '<div class=WordSection1>...'
 Rationale: ''
 Keywords: {}
 Type: 'Functional'
 IndexEnabled: 1
 IndexNumber: []
 SID: 9
 FileRevision: 1
 ModifiedOn: 03-Aug-2017 17:34:56
 Dirty: 0
 Comments: [0x0 struct]
 Index: '3'

Find all the child referenced requirements of parentRef that were modified in revision 1.

childRefs1 = find(parentRef,'FileRevision',1)

childRefs1=1×18 object
 1x18 Reference array with properties:

 Id
 CustomId
 Artifact
 ArtifactId
 Domain
 UpdatedOn
 CreatedOn
 CreatedBy
 ModifiedBy
 IsLocked
 Summary
 Description

 find

3-123

 Rationale
 Keywords
 Type
 IndexEnabled
 IndexNumber
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

Find all the child referenced requirements of parentRef that were modified in revision 1 and have
an SID equal to 12.

childRefs2 = find(parentRef,'FileRevision',1,'SID',12)

childRefs2 =
 Reference with properties:

 Id: 'Activating cruise control'
 CustomId: 'Activating cruise control'
 Artifact: 'crs_req.docx'
 ArtifactId: '?Activating cruise control'
 Domain: 'linktype_rmi_word'
 UpdatedOn: 02-Feb-2018 13:23:13
 CreatedOn: NaT
 CreatedBy: ''
 ModifiedBy: ''
 IsLocked: 1
 Summary: 'Activating cruise control'
 Description: '<div class=WordSection1>...'
 Rationale: ''
 Keywords: {}
 Type: 'Functional'
 IndexEnabled: 1
 IndexNumber: []
 SID: 12
 FileRevision: 1
 ModifiedOn: 03-Aug-2017 17:34:56
 Dirty: 0
 Comments: [0x0 struct]
 Index: '3.3'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2018a

3 Methods

3-124

See Also
slreq.Reference | slreq.ReqSet | slreq.find

 find

3-125

getAttribute
Class: slreq.Reference
Package: slreq

Get referenced requirement custom attributes

Syntax
val = getAttribute(ref,propertyName)

Description
val = getAttribute(ref,propertyName) returns the value of the referenced requirement
property or custom attribute specified by propertyName.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

propertyName — Referenced requirement property or custom attribute name
string scalar | character vector

Referenced requirement property or custom attribute name, specified as a string scalar or character
vector.
Example: "Priority"

Output Arguments
val — Referenced requirement property or custom attribute value
string scalar | character vector | double | logical | datetime

Referenced requirement property or custom attribute value, returned as a string scalar, character
vector, double, logical, or datetime. The data type depends on the property type or custom
attribute type.
Example: "High"

Examples

Get Referenced Requirement Custom Attribute Value

This example shows how to get the value of a custom attribute for a referenced requirement.

Load a requirement set called My_Requirement_Set.

3 Methods

3-126

rs = slreq.load('C:\MATLAB\My_Requirements_Set.slreqx');

Find the referenced requirement with ID R20.1.

ref1 = find(rs,Type="Reference",ID="R20.1");

Get the value of the Priority custom attribute for the referenced requirement.

val = getAttribute(ref1,"Priority")

val =

 "Low"

Version History
Introduced in R2018a

See Also
slreq.Reference | slreq.ReqSet | setAttribute

 getAttribute

3-127

getImplementationStatus
Class: slreq.Reference
Package: slreq

Query referenced requirement implementation status summary

Syntax
status = getImplementationStatus(ref)
status = getImplementationStatus(ref, 'self')

Description
status = getImplementationStatus(ref) returns the implementation status summary for the
referenced requirement ref and its child references.

status = getImplementationStatus(ref, 'self') returns the implementation status
summary for just the referenced requirement ref.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement instance, specified as an slreq.Reference object.

Output Arguments
status — Referenced requirement implementation status summary
structure

The implementation status summary for the referenced requirement and its child references,
returned as a MATLAB structure containing these fields.

total — Total number of referenced requirements
double

The total number of Functional referenced requirements (including child references), returned as a
double.

implemented — Implemented referenced requirements
double

The total number of implemented referenced requirements (including child references), returned as a
double.

justified — Justified referenced requirements
double

3 Methods

3-128

The total number of referenced requirements (including child references), justified for
implementation, returned as a double.

none — Unimplemented referenced requirements
double

The total number of unimplemented referenced requirements (including child references), returned
as a double.

Examples
Get Implementation Status Summary of a Referenced Requirement

% Get the implementation status summary of the referenced requirement ref
% and its child references
refImplStatus = getImplementationStatus(ref)

refImplStatus =

 struct with fields:

 total: 35
 implemented: 23
 justified: 9
 none: 3

% Get the implementation status summary of only the referenced requirement myRef
myRefImplStatus = getImplementationStatus(myRef, 'self')

myRefImplStatus =

 struct with fields:

 implemented: 0
 justified: 0
 none: 0

Version History
Introduced in R2018b

See Also
updateImplementationStatus

 getImplementationStatus

3-129

getPostImportFcn
Class: slreq.Reference
Package: slreq

Get contents of PostImportFcn callback

Syntax
callback = getPostImportFcn(topRef)

Description
callback = getPostImportFcn(topRef) returns the contents of the PostImportFcn callback
for the Import node topRef.

Input Arguments
topRef — Import node
slreq.Reference object

Import node, specified as an slreq.Reference object.

Output Arguments
callback — Contents of PostImportFcn callback
character vector

Contents of the PostImportFcn callback for the Import node, returned as a character vector.

Examples

Use PostImportFcn Callback During Import

This example shows how to assign a script as the PostImportFcn callback for an Import node. You
get the contents of the PostImportFcn callback for an Import node and register a different script
after you import the requirements.

Import the Requirements

Use slreq.import to import the ReqIF file mySpec.reqif into Requirements Toolbox™. Name the
imported requirement set myReqSet, register the script myPreImportScript2 as the
PreImportFcn, and register the script myPostImportScript as the PostImportFcn callback.
Return a handle to the requirement set.

[~,~,rs] = slreq.import("mySpec.reqif",ReqSet="myReqSet",preImportFcn="myPreImportScript2",postImportFcn="myPostImportScript");

The script myPreImportScript2 uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

3 Methods

3-130

type myPreImportScript2.m

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile2.xml";

The mapping file myMappingFile2.xml maps these attributes from the ReqIF™ file to these
properties in Requirements Toolbox™:

• ReqSum to Summary
• Desc to Description
• ID to Custom ID

The script myPostImportScript uses slreq.getCurrentObject to get a handle to the Import
node, gets the requirement set that the Import node belongs to, and then finds requirements that
have the summary Requirement 1 and Requirement 2. Then, the script moves Requirement 2
under Requirement 1.

type myPostImportScript.m

topRef = slreq.getCurrentObject;
rs = reqSet(topRef);
ref = find(rs,Type="Reference",Summary="Requirement 2");
parentRef = find(rs,Type="Reference",Summary="Requirement 1");
parentID = parentRef.SID;
setParent(ref,parentID);

Confirm that Requirement 2 is a child of Requirement 1.

req1 = find(rs,Summary="Requirement 1");
req2 = children(req1);
reqSummary = req2.Summary

reqSummary =
'Requirement 2'

Get and Set the PostImportFcn Callback

Get a handle to the Import node, then register the script myPostImportScrip2 as the
PostImportFcn callback. Confirm that the contents of the callback changed.

topRef = children(rs);
setPostImportFcn(topRef,"myPostImportScript2")
newCallback = getPostImportFcn(topRef)

newCallback =
'myPostImportScript2'

The myPostImportScript2 script moves Requirement 2 under Requirement 3.

type myPostImportScript2.m

topRef = slreq.getCurrentObject;
rs = reqSet(topRef);
ref = find(rs,Type="Reference",Summary="Requirement 2");
parentRef = find(rs,Type="Reference",Summary="Requirement 3");
parentID = parentRef.SID;
setParent(ref,parentID);

 getPostImportFcn

3-131

Update the requirement set. The PostImportFcn callback executes after you update the
requirement set.

updateReferences(rs,topRef);

Confirm that Requirement 2 is a child of Requirement 3.

req3 = find(rs,Summary="Requirement 3");
req2 = children(req3);
reqSummary = req2.Summary

reqSummary =
'Requirement 2'

Version History
Introduced in R2022a

See Also
getPreImportFcn | setPreImportFcn | setPostImportFcn | setParent

Topics
“Use Callbacks to Customize Requirement Import Behavior”

3 Methods

3-132

getPreImportFcn
Class: slreq.Reference
Package: slreq

Get registered PreImportFcn callback script

Syntax
callback = getPreImportFcn(topRef)

Description
callback = getPreImportFcn(topRef) returns the contents of the PreImportFcn callback for
the Import node topRef.

Input Arguments
topRef — Import node
slreq.Reference object

Import node, specified as an slreq.Reference object.

Output Arguments
callback — Contents of PreImportFcn callback
character vector

Contents of the PreImportFcn callback for the Import node, returned as a character vector.

Examples

Use PreImportFcn Callback During Import

This example shows how to assign a script as the PreImportFcn callback for an Import node. You
get the contents of the PreImportFcn callback for an Import node and register a different script as
the PreImportFcn callback after you import the requirements.

Import the Requirements

Use slreq.import to import the ReqIF™ file mySpec.reqif into Requirements Toolbox™. Name
the imported requirement set myReqSet and register the script myPreImportScript as the
PreImportFcn callback to use during import. Return a handle to the requirement set.

[~,~,rs] = slreq.import("mySpec.reqif",ReqSet="myReqSet",preImportFcn="myPreImportScript");

The script myPreImportScript uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

type myPreImportScript.m

 getPreImportFcn

3-133

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile.xml";

The mapping file myMappingFile.xml uses a generic mapping.

Get the custom ID for the requirement with Index set to 1.

req1 = find(rs,Index="1");
cID = req1.CustomId

cID =

 0x0 empty char array

The generic mapping does not map the ReqIF attribute ID to the Requirement Toolbox attribute
Custom ID. Instead, ID imports as a custom attribute. Get the value for the ID custom attribute for
Requirement 1.

cID = getAttribute(req1,"ID")

cID =
'A1'

Get and Set the PreImportFcn Callback Script

Get a handle to the Import node, then register the script myPreImportScrip2 as the
PreImportFcn callback. Confirm that the registered callback was changed.

topRef = children(rs);
setPreImportFcn(topRef,"myPreImportScript2")
newCallback = getPreImportFcn(topRef)

newCallback =
'myPreImportScript2'

The script myPreImportScript2 uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

type myPreImportScript2.m

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile2.xml";

The mapping file myMappingFile2.xml maps these attributes from the ReqIF™ file to these
properties in Requirements Toolbox™:

• ReqSum to Summary
• Desc to Description
• ID to Custom ID

Update the requirement set. The PreImportFcn callback script also executes when you update the
requirement set.

updateReferences(rs,topRef);

Get the custom ID for the requirement with Index set to 1.

3 Methods

3-134

req1 = find(rs,Index="1");
cID = req1.CustomId

cID =
'A1'

Version History
Introduced in R2022a

See Also
getPostImportFcn | setPreImportFcn | setPostImportFcn

Topics
“Use Callbacks to Customize Requirement Import Behavior”

 getPreImportFcn

3-135

getVerificationStatus
Class: slreq.Reference
Package: slreq

Query referenced requirement verification status summary

Syntax
status = getVerificationStatus(ref)
status = getVerificationStatus(ref, 'self')

Description
status = getVerificationStatus(ref) returns the verification status summary for the
referenced requirement ref and all its child references.

status = getVerificationStatus(ref, 'self') returns the verification status summary for
just the referenced requirement ref.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement instance, specified as an slreq.Reference object.

Output Arguments
status — Referenced requirement verification status summary
structure

The verification status summary for the referenced requirement and its child references, returned as
a MATLAB structure containing these fields.

total — Total number of referenced requirements
double

The total number of referenced requirements (including child references) with Verify links, returned
as a double.

passed — Passed referenced requirements
double

The total number of referenced requirements (including child references) that passed the tests
associated with them, returned as a double.

failed — Failed referenced requirements
double

3 Methods

3-136

The total number of referenced requirements (including child references) that failed the tests
associated with them, returned as a double.

unexecuted — Unexecuted requirements
double

The total number of referenced requirements (including child references) with unexecuted associated
tests, returned as a double.

justified — Justified referenced requirements
double

The total number of referenced requirements (including child references) that are justified for
verification, returned as a double.

none — Unlinked referenced requirements
double

The total number of referenced requirements (including child references) without links to verification
objects, returned as a double.

Examples
Get Verification Status Summary of Referenced Requirements

% Get the verification status summary of the referenced requirement ref
% and all its child references
refVerifStatus = getVerificationStatus(ref)

refVerifStatus =

 struct with fields:

 total: 70
 passed: 45
 failed: 7
 unexecuted: 10
 justified: 1
 none: 7

% Get the verification status summary of only the referenced requirement myRef
myRefVerifStatus = getVerificationStatus(myRef, 'self')

myRefVerifStatus =

 struct with fields:

 passed: 1
 failed: 0
 unexecuted: 0
 justified: 0
 none: 0

Version History
Introduced in R2018b

 getVerificationStatus

3-137

See Also
updateVerificationStatus

3 Methods

3-138

hasNewUpdate
Class: slreq.Reference
Package: slreq

Check if import node has available update

Syntax
tf = hasNewUpdate(topRef)

Description
tf = hasNewUpdate(topRef) checks if the external document associated with the import node
topRef has changed since the document was last imported.

Input Arguments
topRef — Import node
slreq.Reference object

Import node, specified as an slreq.Reference object.

Output Arguments
tf — Available update indicator
0 | 1

Available update indicator, returned as a 1 or 0 of data type logical.

Examples

Check Import Node for Available Update and Update Referenced Requirements

This example shows how to check if the import node has an available update and update the
referenced requirements.

Open the Requirements Definition for a Cruise Control Model project.

slreqCCProjectStart;

Load the crs_req requirement set.

rs = slreq.load("crs_req");

Get a handle to the import node of the requirement set.

topRef = children(rs);

Check if the import node has an available update.

 hasNewUpdate

3-139

tf = hasNewUpdate(topRef)

tf = logical
 1

A result of 1 means that topRef has been updated since the last time it was imported. Update the
referenced requirements under the import node.

[status,changelist] = updateFromDocument(topRef)

status =
'Update completed. Refer to Comments on Import1.'

changelist =
 'Updated: CC003_01. Properties: description
 Updated: CC003_02. Properties: description
 Updated: CC003_03. Properties: description
 Updated: CC003_04. Properties: description
 Updated: Cruise control buttons. Properties: description
 Updated: Cruise control mode indicator. Properties: description
 Updated: Cruise control modes. Properties: description
 Updated: Dashboard image. Properties: description
 Updated: Deactivating cruise control. Properties: description
 Updated: Disabling cruise control. Properties: description
 Updated: Enabling cruise control. Properties: description
 Updated: Other inputs. Properties: description
 Updated: ROM. Properties: description
 Updated: Resuming cruise control. Properties: description
 Updated: System Inputs. Properties: description
 Updated: System outputs. Properties: description
 Updated: Throttle value calculation. Properties: description
 '

Version History
Introduced in R2019b

See Also
slreq.Reference | updateFromDocument

3 Methods

3-140

inLinks
Class: slreq.Reference
Package: slreq

Get incoming links for referenced requirements

Syntax
myLinks = inLinks(ref)

Description
myLinks = inLinks(ref) returns the incoming links for the referenced requirement ref.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

Output Arguments
myLinks — Incoming links
slreq.Link array

Incoming links for the requirement, returned as an slreq.Link array.

Examples

Get Incoming and Outgoing Links for Referenced Requirements

This example shows how to get incoming and outgoing links for referenced requirements.

Open the Requirements Definition for a Cruise Control Model project. Load the crs_req requirement
set.

slreqCCProjectStart;
rs = slreq.load("crs_req");

Find the requirement with the index 2.1.2.

ref1 = find(rs,Index="2.1.2");

Get the incoming links for the requirement.

myInLinks = inLinks(ref1);

Find the requirement with the index 3.1.

 inLinks

3-141

ref2 = find(rs,Index="3.1");

Get the outgoing links for the requirement.

myOutLinks = outLinks(ref2);

Tips
• To get the incoming links for a requirement, use slreq.Requirement.inLinks.

Alternative Functionality
App

You can also use the Requirements Editor to view incoming links. Select a referenced requirement.
In the right pane, under Links, the incoming links icon indicates incoming links.

Version History
Introduced in R2017b

See Also
slreq.Reference | slreq.Link | outLinks

3 Methods

3-142

isFilteredIn
Class: slreq.Reference
Package: slreq

Check filtered referenced requirements

Syntax
tf = isFilteredIn(ref)

Description
tf = isFilteredIn(ref) checks if the referenced requirement, ref, is filtered in the
Requirements Editor or Requirements Perspective and returns 1 if the referenced requirement is
not filtered and 0 if the referenced requirement is filtered.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

Examples

Check for Filtered Referenced Requirements

This example shows how to check if a referenced requirement is filtered.

Load the crs_req requirement set.

rs = slreq.open("crs_req");

Find the requirement with Summary set to Overview.

ref = find(rs,Summary="Overview");

Check if the referenced requirement is filtered.

tf = isFilteredIn(ref)

tf = logical
 1

Create a filter called ContainerReqs. Use the ReqFilter property to define a filter that displays
only requirements with Type set to Container.

myView = slreq.View.create("ContainerReqs");
myView.ReqFilter = "{'ReqType','Container'};"

 isFilteredIn

3-143

myView =
 View with properties:

 Name: 'ContainerReqs'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

Apply the filter, then check if the referenced requirement is filtered.

activate(myView)
tf = isFilteredIn(ref)

tf = logical
 0

Clear the loaded requirement sets and close the Requirements Editor.

slreq.clear;

Tips
• To check if a requirement is filtered, use slreq.Requirement.isFilteredIn. To check if a
justification is filtered, use slreq.Justification.isFilteredIn. To check if a link is filtered,
use slreq.Link.isFilteredIn.

Version History
Introduced in R2022b

See Also
Apps
Requirements Editor

Classes
slreq.Reference

Objects
slreq.View

Topics
“Filter Requirements and Links in the Requirements Editor”

3 Methods

3-144

isJustifiedFor
Class: slreq.Reference
Package: slreq

Check if referenced requirement is justified

Syntax
tf = isJustifiedFor(ref, linkType)

Description
tf = isJustifiedFor(ref, linkType) checks if the referenced requirement ref is justified for
the link type specified by linkType.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement to check for justification, specified as an slreq.Reference object.

linkType — Justification link type
'Implement' | 'Verify'

Justification link type, specified as a character vector.

Output Arguments
tf — Justification status
0 | 1

The justification status of the referenced requirement, returned as a Boolean.

Examples
Check if Referenced Requirements Are Justified

% Check if referenced requirement ref1 is justified for Implementation
ref1_Status = isJustifiedFor(ref1, 'Implement')

ref1_Status =

 logical

 1

% Check if referenced requirement ref2 is justified for Verification
ref2_Status = isJustifiedFor(ref2, 'Verify')

 isJustifiedFor

3-145

ref2_Status =

 logical

 0

Version History
Introduced in R2018b

See Also
getImplementationStatus | getVerificationStatus

3 Methods

3-146

justifyImplementation
Class: slreq.Reference
Package: slreq

Justify referenced requirements for implementation

Syntax
implementationJustLink = justifyImplementation(ref, jt)

Description
implementationJustLink = justifyImplementation(ref, jt) justifies the referenced
requirement ref for implementation by creating a link implementationJustLink from the
justification jt to ref.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement to justify for implementation, specified as an slreq.Reference object.

jt — Justification object
slreq.Justification object

Justification object to justify ref for implementation, specified as an slreq.Justification object.

Output Arguments
implementationJustLink — Justification link
slreq.Link object

Link to justification object jt of type Implement, returned as an slreq.Link object.

Examples
% Justify referenced requirement myRef for implementation
% by using a justification object myJust

myImplJustification = justifyImplementation(myRef, myJust)

myImplJustification =

 Link with properties:

 Type: 'Implement'
 Description: 'Cruise Control Mode (crs_req_func_spec#1)'
 Keywords: [0×0 char]
 Rationale: ''

 justifyImplementation

3-147

 CreatedOn: 13-Jan-2017 13:45:12
 CreatedBy: 'John Doe'
 ModifiedOn: 24-Oct-2018 12:25:30
 ModifiedBy: 'Jane Doe'
 Revision: 6
 Comments: [0×0 struct]

Version History
Introduced in R2018b

See Also
getImplementationStatus | addJustification

3 Methods

3-148

justifyVerification
Class: slreq.Reference
Package: slreq

Justify referenced requirements for verification

Syntax
verificationJustLink = justifyVerification(ref, jt)

Description
verificationJustLink = justifyVerification(ref, jt) justifies the referenced
requirement ref for verification by creating a link verificationJustLink from the justification jt
to ref.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement to justify for verification, specified as an slreq.Reference object.

jt — Justification object
slreq.Justification object

Justification object to justify ref for verification, specified as an slreq.Justification object.

Output Arguments
verificationJustLink — Justification link
slreq.Link object

Link to justification object jt of type Verify, returned as an slreq.Link object.

Examples
% Justify referenced requirement myRef for verification
% by using a justification object myJust

myVerifJustification = justifyVerification(myRef, myJust)

myVerifJustification =

 Link with properties:

 Type: 'Verify'
 Description: 'Brake Test (crs_req_func_spec#73)'
 Keywords: [0×0 char]
 Rationale: ''

 justifyVerification

3-149

 CreatedOn: 25-Nov-2017 10:11:35
 CreatedBy: 'John Doe'
 ModifiedOn: 26-Feb-2018 17:16:09
 ModifiedBy: 'Jane Doe'
 Revision: 7
 Comments: [0×0 struct]

Version History
Introduced in R2018b

See Also
addJustification | getVerificationStatus

3 Methods

3-150

moveDown
Class: slreq.Reference
Package: slreq

Move referenced requirement down in hierarchy

Syntax
tf = moveDown(ref)

Description
tf = moveDown(ref) moves the referenced requirement ref down one spot in the hierarchy, and
returns 1 if the move executes without error. The referenced requirement ref cannot be moved to a
new level in the hierarchy.

Note You can use this method only in the PostImportFcn callback.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

Output Arguments
tf — Move success status
0 | 1

Move success status, returned as a 1 or 0 of data type logical.

Examples

Move Referenced Requirement in PostImportFcn Callback

This example shows how to move an imported referenced requirement up and down in the hierarchy
in the PostImportFcn callback.

Use slreq.import to import the ReqIF™ file mySpec.reqif into Requirements Toolbox™. Name
the imported requirement set myReqSet, register the script myPreImportScript2 as the
PreImportFcn, and register the script movePostImport as the PostImportFcn callback to use
during import. Return a handle to the requirement set.

[~,~,rs] = slreq.import("mySpec.reqif",ReqSet="myReqSet",preImportFcn="myPreImportScript2",postImportFcn="movePostImport");

 moveDown

3-151

The script myPreImportScript2 uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

type myPreImportScript2.m

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile2.xml";

The mapping file myMappingFile2.xml maps these attributes from the ReqIF file to these
properties in Requirements Toolbox:

• ReqSum to Summary
• Desc to Description
• ID to Custom ID

The script myPostImportScript uses slreq.getCurrentObject to get a handle to the import
node, gets the requirement set that the import node belongs to. The script then finds the referenced
requirement that has Summary set to Requirement 3 and moves it up. It also finds the referenced
requirement that has Summary set to Requirement 1 and moves it down.

type movePostImport.m

topRef = slreq.getCurrentObject;
rs = reqSet(topRef);
ref1 = find(rs,Type="Reference",Summary="Requirement 3");
tf1 = moveUp(ref1);
ref2 = find(rs,Type="Reference",Summary="Requirement 1");
tf2 = moveDown(ref2);

Version History
Introduced in R2022a

See Also
slreq.Reference | remove | moveUp | setParent

Topics
“Use Callbacks to Customize Requirement Import Behavior”

3 Methods

3-152

moveUp
Class: slreq.Reference
Package: slreq

Move referenced requirement up in hierarchy

Syntax
tf = moveUp(ref)

Description
tf = moveUp(ref) moves the referenced requirement ref up one spot in the hierarchy, and
returns 1 if the move executes without error. The referenced requirement ref cannot be moved to a
new level in the hierarchy.

Note You can use this method only in the PostImportFcn callback.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

Output Arguments
tf — Move success status
0 | 1

Move success status, returned as a 1 or 0 of data type logical.

Examples

Move Referenced Requirement in PostImportFcn Callback

This example shows how to move an imported referenced requirement up and down in the hierarchy
in the PostImportFcn callback.

Use slreq.import to import the ReqIF™ file mySpec.reqif into Requirements Toolbox™. Name
the imported requirement set myReqSet, register the script myPreImportScript2 as the
PreImportFcn, and register the script movePostImport as the PostImportFcn callback to use
during import. Return a handle to the requirement set.

[~,~,rs] = slreq.import("mySpec.reqif",ReqSet="myReqSet",preImportFcn="myPreImportScript2",postImportFcn="movePostImport");

 moveUp

3-153

The script myPreImportScript2 uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

type myPreImportScript2.m

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile2.xml";

The mapping file myMappingFile2.xml maps these attributes from the ReqIF file to these
properties in Requirements Toolbox:

• ReqSum to Summary
• Desc to Description
• ID to Custom ID

The script myPostImportScript uses slreq.getCurrentObject to get a handle to the import
node, gets the requirement set that the import node belongs to. The script then finds the referenced
requirement that has Summary set to Requirement 3 and moves it up. It also finds the referenced
requirement that has Summary set to Requirement 1 and moves it down.

type movePostImport.m

topRef = slreq.getCurrentObject;
rs = reqSet(topRef);
ref1 = find(rs,Type="Reference",Summary="Requirement 3");
tf1 = moveUp(ref1);
ref2 = find(rs,Type="Reference",Summary="Requirement 1");
tf2 = moveDown(ref2);

Version History
Introduced in R2022a

See Also
slreq.Reference | remove | moveDown | setParent

Topics
“Use Callbacks to Customize Requirement Import Behavior”

3 Methods

3-154

navigateToExternalArtifact
Class: slreq.Reference
Package: slreq

Navigate from imported referenced requirement to original requirement

Syntax
navigateToExternalArtifact(ref)

Description
navigateToExternalArtifact(ref) navigates to the requirement in the external document that
corresponds to the imported referenced requirement, ref.

Note To enable navigation to external documents from referenced requirements that were imported
from ReqIF files, you must register a navigation callback function by using
slreq.registerNavigationFcn.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

Examples

Navigate to Requirements in External Documents

This example shows how to navigate from an imported referenced requirement to the original
requirement in a Microsoft® Word document.

Load the crs_req requirement set.

rs = slreq.load("crs_req");

Get a handle to the referenced requirement with the index 2.

ref = find(rs,Index=2);

Navigate to the original requirement that corresponds to the referenced requirement in the Microsoft
Word document.

navigateToExternalArtifact(ref)

 navigateToExternalArtifact

3-155

Alternative Functionality
App

You can also use the Requirements Editor to navigate to the requirement in the external document.
Select a referenced requirement, and, in the right pane, under Properties, click Show in
document.

Version History
Introduced in R2019a

See Also
slreq.dngConfigure | slreq.registerNavigationFcn | slreq.getNavigationFcn

Topics
“Configure Requirements Toolbox for Interaction with Microsoft Office and IBM DOORS”

3 Methods

3-156

parent
Class: slreq.Reference
Package: slreq

Find parent item of referenced requirement

Syntax
parentObj = parent(ref)

Description
parentObj = parent(ref) returns the parent object parentObj of the slreq.Reference object
req.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement specified as an slreq.Reference object.

Output Arguments
parentObj — Parent object
slreq.Reference object | slreq.ReqSet object

The parent of the referenced requirement ref, returned as an slreq.Reference object or as an
slreq.ReqSet object.

Examples
Find Parent References

% Load a requirement set file and find referenced requirements
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
refs = find(rs, 'Type', 'Reference')

refs =

 1×32 Reference array with properties:

 Keywords
 Artifact
 Id
 Summary
 Description
 SID
 Domain
 SynchronizedOn

 parent

3-157

 ModifiedOn

% Find the parent of the first reference element
parentRef1 = parent(refs(1));

parentRef1 =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

Version History
Introduced in R2018a

See Also
slreq.Reference | slreq.ReqSet | children

3 Methods

3-158

outLinks
Class: slreq.Reference
Package: slreq

Get outgoing links for referenced requirements

Syntax
myLinks = outLinks(ref)

Description
myLinks = outLinks(ref) returns the outgoing links for the referenced requirement ref.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

Output Arguments
myLinks — Outgoing links
slreq.Link array

Outgoing links for the requirement, returned as an slreq.Link array.

Examples

Get Incoming and Outgoing Links for Referenced Requirements

This example shows how to get incoming and outgoing links for referenced requirements.

Open the Requirements Definition for a Cruise Control Model project. Load the crs_req requirement
set.

slreqCCProjectStart;
rs = slreq.load("crs_req");

Find the requirement with the index 2.1.2.

ref1 = find(rs,Index="2.1.2");

Get the incoming links for the requirement.

myInLinks = inLinks(ref1);

Find the requirement with the index 3.1.

 outLinks

3-159

ref2 = find(rs,Index="3.1");

Get the outgoing links for the requirement.

myOutLinks = outLinks(ref2);

Tips
• To get the outgoing links for a requirement, use slreq.Requirement.outLinks. To get the

outgoing links for a justification, use slreq.Justification.outLinks.

Alternative Functionality
App

You can also use the Requirements Editor to view outgoing links. Select a referenced requirement.
In the right pane, under Links, the outgoing links icon indicates outgoing links.

Version History
Introduced in R2017b

See Also
slreq.Reference | slreq.Link | inLinks

3 Methods

3-160

remove
Class: slreq.Reference
Package: slreq

Remove referenced requirements

Syntax
count = remove(topRef)
count = remove(ref)

Description
count = remove(topRef) removes all descendant referenced requirements under the import node
topRef as well as the import node itself. The function returns the number of referenced
requirements removed.

count = remove(ref) removes the referenced requirement ref and the descendant referenced
requirements. The function returns the number of referenced requirements removed. You can use
this syntax only in the PostImportFcn callback.

Input Arguments
topRef — Import node
slreq.Reference object

Import node, specified as an slreq.Reference object.

ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

Output Arguments
count — Removed referenced requirements count
double

The number of referenced requirements removed, returned as a double.

Examples

Remove Import Node from Requirement Set

Load a requirement set file called myReqSet.

rs = slreq.load("myReqSet");

Get a handle to the import node.

 remove

3-161

topRef = children(rs);

Remove the import node and its descendant requirements.

count = remove(topRef)

count =

 46

Remove Referenced Requirement in PostImportFcn Callback

This example shows how to remove an imported referenced requirement in the PostImportFcn
callback.

Use slreq.import to import the ReqIF™ file mySpec.reqif into Requirements Toolbox™. Name
the imported requirement set myReqSet, register the script myPreImportScript2 as the
PreImportFcn, and register the script removePostImport as the PostImportFcn callback to use
during import. Return a handle to the requirement set.

[~,~,rs] = slreq.import("mySpec.reqif",ReqSet="myReqSet", ...
 preImportFcn="myPreImportScript2",postImportFcn="removePostImport");

The script myPreImportScript2 uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

type myPreImportScript2.m

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile2.xml";

The mapping file myMappingFile2.xml maps these attributes from the ReqIF file to these
properties in Requirements Toolbox:

• ReqSum to Summary
• Desc to Description
• ID to Custom ID

The script myPostImportScript uses slreq.getCurrentObject to get a handle to the import
node, gets the requirement set that the import node belongs to, then finds and removes the
referenced requirement that has Summary set to Requirement 3.

type removePostImport.m

topRef = slreq.getCurrentObject;
rs = reqSet(topRef);
ref = find(rs,Type="Reference",Summary="Requirement 3");
count = remove(ref);

Version History
Introduced in R2019a

3 Methods

3-162

See Also
add | slreq.Reference

Topics
“Use Callbacks to Customize Requirement Import Behavior”

 remove

3-163

reqSet
Class: slreq.Reference
Package: slreq

Return parent requirement set

Syntax
rsout = reqSet(ref)

Description
rsout = reqSet(ref) returns the parent requirement set rsout to which the referenced
requirement ref belongs.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

Output Arguments
rsout — Parent requirement set
slreq.ReqSet object

The parent requirement set of the referenced requirement ref, returned as an slreq.ReqSet
object.

Examples
Query Requirement Set Information

% Load a new requirement set file and select one referenced requirement
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allRefs = find(rs,'Type','Reference');
ref = allRefs(1);

% Query which requirement set ref belongs to
reqSet(ref)

ans =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 65

3 Methods

3-164

 Dirty: 0
 CustomAttributeNames: {}

Version History
Introduced in R2018a

See Also
slreq.Reference | slreq.ReqSet | parent

 reqSet

3-165

setAttribute
Class: slreq.Reference
Package: slreq

Set referenced requirement custom attributes

Syntax
setAttribute(ref,propertyName,propertyValue)

Description
setAttribute(ref,propertyName,propertyValue) sets the value of the referenced
requirement property or custom attribute, propertyName, to the value specified by
propertyValue.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

propertyName — Referenced requirement property or custom attribute name
string scalar | character vector

Referenced requirement property or custom attribute name, specified as a string scalar or character
vector.
Example: "Priority"

propertyValue — Referenced requirement custom attribute value
string scalar | character vector | double | logical | datetime

Referenced requirement property or custom attribute value, specified as a string scalar, character
vector, double, logical, or datetime. The data type depends on the property type or custom
attribute type.
Example: "High"

Examples
Set Referenced Requirement Custom Attribute Value

This example shows how to set the value of a custom attribute for a referenced requirement.

Load a requirement set called My_Requirement_Set.

rs = slreq.load('C:\MATLAB\My_Requirements_Set.slreqx');

Find the referenced requirement with ID R20.1.

3 Methods

3-166

ref1 = find(rs,Type="Reference",ID="R20.1");

Set the Priority custom attribute of the referenced requirement to Low.

setAttribute(ref1,"Priority","Low");

Version History
Introduced in R2018a

See Also
slreq.Reference | slreq.ReqSet | getAttribute

 setAttribute

3-167

setParent
Class: slreq.Reference
Package: slreq

Set parent of referenced requirement in PostImportFcn callback

Syntax
setParent(ref,parentID)

Description
setParent(ref,parentID) moves the referenced requirement ref under the parent referenced
requirement specified by parentID. You can only use this method in the PostImportFcn callback.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

parentID — SID of parent referenced requirement
int32 | double

SID on page 2-0 of the parent referenced requirement, specified as an int32 or a double.

Examples

Use PostImportFcn Callback During Import

This example shows how to assign a script as the PostImportFcn callback for an Import node. You
get the contents of the PostImportFcn callback for an Import node and register a different script
after you import the requirements.

Import the Requirements

Use slreq.import to import the ReqIF file mySpec.reqif into Requirements Toolbox™. Name the
imported requirement set myReqSet, register the script myPreImportScript2 as the
PreImportFcn, and register the script myPostImportScript as the PostImportFcn callback.
Return a handle to the requirement set.

[~,~,rs] = slreq.import("mySpec.reqif",ReqSet="myReqSet",preImportFcn="myPreImportScript2",postImportFcn="myPostImportScript");

The script myPreImportScript2 uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

type myPreImportScript2.m

3 Methods

3-168

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile2.xml";

The mapping file myMappingFile2.xml maps these attributes from the ReqIF™ file to these
properties in Requirements Toolbox™:

• ReqSum to Summary
• Desc to Description
• ID to Custom ID

The script myPostImportScript uses slreq.getCurrentObject to get a handle to the Import
node, gets the requirement set that the Import node belongs to, and then finds requirements that
have the summary Requirement 1 and Requirement 2. Then, the script moves Requirement 2
under Requirement 1.

type myPostImportScript.m

topRef = slreq.getCurrentObject;
rs = reqSet(topRef);
ref = find(rs,Type="Reference",Summary="Requirement 2");
parentRef = find(rs,Type="Reference",Summary="Requirement 1");
parentID = parentRef.SID;
setParent(ref,parentID);

Confirm that Requirement 2 is a child of Requirement 1.

req1 = find(rs,Summary="Requirement 1");
req2 = children(req1);
reqSummary = req2.Summary

reqSummary =
'Requirement 2'

Get and Set the PostImportFcn Callback

Get a handle to the Import node, then register the script myPostImportScrip2 as the
PostImportFcn callback. Confirm that the contents of the callback changed.

topRef = children(rs);
setPostImportFcn(topRef,"myPostImportScript2")
newCallback = getPostImportFcn(topRef)

newCallback =
'myPostImportScript2'

The myPostImportScript2 script moves Requirement 2 under Requirement 3.

type myPostImportScript2.m

topRef = slreq.getCurrentObject;
rs = reqSet(topRef);
ref = find(rs,Type="Reference",Summary="Requirement 2");
parentRef = find(rs,Type="Reference",Summary="Requirement 3");
parentID = parentRef.SID;
setParent(ref,parentID);

Update the requirement set. The PostImportFcn callback executes after you update the
requirement set.

 setParent

3-169

updateReferences(rs,topRef);

Confirm that Requirement 2 is a child of Requirement 3.

req3 = find(rs,Summary="Requirement 3");
req2 = children(req3);
reqSummary = req2.Summary

reqSummary =
'Requirement 2'

Version History
Introduced in R2022a

See Also
slreq.Reference | getPostImportFcn | setPostImportFcn | moveUp | moveDown

Topics
“Use Callbacks to Customize Requirement Import Behavior”

3 Methods

3-170

setPostImportFcn
Class: slreq.Reference
Package: slreq

Assign PostImportFcn callback script

Syntax
setPostImportFcn(topRef,callbackScript)

Description
setPostImportFcn(topRef,callbackScript) assigns the script specified by callbackScript
as the PostImportFcn callback script for the Import node topRef.

Input Arguments
topRef — Import node
slreq.Reference object

Import node, specified as an slreq.Reference object.

callbackScript — Name of script to register
string scalar | character vector

Name of the script to register as the PostImportFcn callback for the Import node, specified as a
string scalar or character vector.

Examples

Use PostImportFcn Callback During Import

This example shows how to assign a script as the PostImportFcn callback for an Import node. You
get the contents of the PostImportFcn callback for an Import node and register a different script
after you import the requirements.

Import the Requirements

Use slreq.import to import the ReqIF file mySpec.reqif into Requirements Toolbox™. Name the
imported requirement set myReqSet, register the script myPreImportScript2 as the
PreImportFcn, and register the script myPostImportScript as the PostImportFcn callback.
Return a handle to the requirement set.

[~,~,rs] = slreq.import("mySpec.reqif",ReqSet="myReqSet",preImportFcn="myPreImportScript2",postImportFcn="myPostImportScript");

The script myPreImportScript2 uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

type myPreImportScript2.m

 setPostImportFcn

3-171

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile2.xml";

The mapping file myMappingFile2.xml maps these attributes from the ReqIF™ file to these
properties in Requirements Toolbox™:

• ReqSum to Summary
• Desc to Description
• ID to Custom ID

The script myPostImportScript uses slreq.getCurrentObject to get a handle to the Import
node, gets the requirement set that the Import node belongs to, and then finds requirements that
have the summary Requirement 1 and Requirement 2. Then, the script moves Requirement 2
under Requirement 1.

type myPostImportScript.m

topRef = slreq.getCurrentObject;
rs = reqSet(topRef);
ref = find(rs,Type="Reference",Summary="Requirement 2");
parentRef = find(rs,Type="Reference",Summary="Requirement 1");
parentID = parentRef.SID;
setParent(ref,parentID);

Confirm that Requirement 2 is a child of Requirement 1.

req1 = find(rs,Summary="Requirement 1");
req2 = children(req1);
reqSummary = req2.Summary

reqSummary =
'Requirement 2'

Get and Set the PostImportFcn Callback

Get a handle to the Import node, then register the script myPostImportScrip2 as the
PostImportFcn callback. Confirm that the contents of the callback changed.

topRef = children(rs);
setPostImportFcn(topRef,"myPostImportScript2")
newCallback = getPostImportFcn(topRef)

newCallback =
'myPostImportScript2'

The myPostImportScript2 script moves Requirement 2 under Requirement 3.

type myPostImportScript2.m

topRef = slreq.getCurrentObject;
rs = reqSet(topRef);
ref = find(rs,Type="Reference",Summary="Requirement 2");
parentRef = find(rs,Type="Reference",Summary="Requirement 3");
parentID = parentRef.SID;
setParent(ref,parentID);

Update the requirement set. The PostImportFcn callback executes after you update the
requirement set.

3 Methods

3-172

updateReferences(rs,topRef);

Confirm that Requirement 2 is a child of Requirement 3.

req3 = find(rs,Summary="Requirement 3");
req2 = children(req3);
reqSummary = req2.Summary

reqSummary =
'Requirement 2'

Version History
Introduced in R2022a

See Also
getPostImportFcn | getPreImportFcn | setPreImportFcn | setParent

Topics
“Use Callbacks to Customize Requirement Import Behavior”

 setPostImportFcn

3-173

setPreImportFcn
Class: slreq.Reference
Package: slreq

Assign PreImportFcn callback script

Syntax
setPreImportFcn(topRef,callbackScript)

Description
setPreImportFcn(topRef,callbackScript) assigns the script specified by callbackScript
as the PreImportFcn callback script for the Import node topRef.

Input Arguments
topRef — Import node
slreq.Reference object

Import node, specified as an slreq.Reference object.

callbackScript — Name of script to register
string scalar | character vector

Name of the script to register as the PreImportFcn callback for the Import node, specified as a
string scalar or character vector.

Examples

Use PreImportFcn Callback During Import

This example shows how to assign a script as the PreImportFcn callback for an Import node. You
get the contents of the PreImportFcn callback for an Import node and register a different script as
the PreImportFcn callback after you import the requirements.

Import the Requirements

Use slreq.import to import the ReqIF™ file mySpec.reqif into Requirements Toolbox™. Name
the imported requirement set myReqSet and register the script myPreImportScript as the
PreImportFcn callback to use during import. Return a handle to the requirement set.

[~,~,rs] = slreq.import("mySpec.reqif",ReqSet="myReqSet",preImportFcn="myPreImportScript");

The script myPreImportScript uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

type myPreImportScript.m

3 Methods

3-174

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile.xml";

The mapping file myMappingFile.xml uses a generic mapping.

Get the custom ID for the requirement with Index set to 1.

req1 = find(rs,Index="1");
cID = req1.CustomId

cID =

 0x0 empty char array

The generic mapping does not map the ReqIF attribute ID to the Requirement Toolbox attribute
Custom ID. Instead, ID imports as a custom attribute. Get the value for the ID custom attribute for
Requirement 1.

cID = getAttribute(req1,"ID")

cID =
'A1'

Get and Set the PreImportFcn Callback Script

Get a handle to the Import node, then register the script myPreImportScrip2 as the
PreImportFcn callback. Confirm that the registered callback was changed.

topRef = children(rs);
setPreImportFcn(topRef,"myPreImportScript2")
newCallback = getPreImportFcn(topRef)

newCallback =
'myPreImportScript2'

The script myPreImportScript2 uses slreq.getCurrentImportOptions to get the import
options, then specifies the attribute mapping file to use during import.

type myPreImportScript2.m

importOptions = slreq.getCurrentImportOptions;
importOptions.MappingFile = "myMappingFile2.xml";

The mapping file myMappingFile2.xml maps these attributes from the ReqIF™ file to these
properties in Requirements Toolbox™:

• ReqSum to Summary
• Desc to Description
• ID to Custom ID

Update the requirement set. The PreImportFcn callback script also executes when you update the
requirement set.

updateReferences(rs,topRef);

Get the custom ID for the requirement with Index set to 1.

 setPreImportFcn

3-175

req1 = find(rs,Index="1");
cID = req1.CustomId

cID =
'A1'

Version History
Introduced in R2022a

See Also
getPostImportFcn | getPreImportFcn | setPostImportFcn

Topics
“Use Callbacks to Customize Requirement Import Behavior”

3 Methods

3-176

unlock
Class: slreq.Reference
Package: slreq

Unlock referenced requirements

Syntax
unlock(ref)

Description
unlock(ref) unlocks a referenced requirement for editing.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement to unlock, specified as an slreq.Reference object.

Examples
Unlock an Imported Referenced Requirement

% Load a requirement set file
rs = slreq.load('C:\MATLAB\My_Requirement_Set_1.slreqx');

% Find all referenced requirements in the requirement set
allRefs = find(rs, 'Type', 'Reference')

allRefs =

 1×73 Reference array with properties:

 Id
 CustomId
 Artifact
 ArtifactId
 Domain
 UpdatedOn
 CreatedOn
 CreatedBy
 ModifiedBy
 IsLocked
 Summary
 Description
 Rationale
 Keywords
 Type
 SID

 unlock

3-177

 FileRevision
 ModifiedOn
 Dirty
 Comments

% Unlock a referenced requirement
unlock(allRefs(25))

Version History
Introduced in R2019a

See Also
unlockAll

3 Methods

3-178

unlockAll
Class: slreq.Reference
Package: slreq

Unlock all child referenced requirements for editing

Syntax
unlockAll(topRef)

Description
unlockAll(topRef) unlocks all the child referenced requirements of the top Import node topRef.

Input Arguments
topRef — Import node
slreq.Reference object

Import node, specified as an slreq.Reference object.

Examples
Unlock all the Children of a Parent Referenced Requirement

% Load a requirement set file
rs = slreq.load('C:\MATLAB\My_Requirement_Set_1.slreqx');

% Find all referenced requirements in the requirement set
allRefs = find(rs, 'Type', 'Reference')

allRefs =

 1×25 Reference array with properties:

 Id
 CustomId
 Artifact
 ArtifactId
 Domain
 UpdatedOn
 CreatedOn
 CreatedBy
 ModifiedBy
 IsLocked
 Summary
 Description
 Rationale
 Keywords
 Type
 SID

 unlockAll

3-179

 FileRevision
 ModifiedOn
 Dirty
 Comments

% Unlock all child referenced requirements of the top Import node
unlockall(allRefs(1))

Version History
Introduced in R2019a

See Also
unlock

3 Methods

3-180

updateFromDocument
Class: slreq.Reference
Package: slreq

Update referenced requirements from external requirements document

Syntax
[status,changeList] = updateFromDocument(topRef)

Description
[status,changeList] = updateFromDocument(topRef) updates the referenced requirements
under the Import node topRef. The function returns the update status and a list of updated
requirements.

Input Arguments
topRef — Import node
slreq.Reference object

Import node, specified as an slreq.Reference object.

Output Arguments
status — Update status
character vector

Requirement set update status, returned as a character vector.

changeList — List of updated referenced requirements
character vector

List of updated referenced requirements, returned as a character vector. The list includes the
properties on page 2-65 of each referenced requirement changed by the function.

Examples

Check Import Node for Available Update and Update Referenced Requirements

This example shows how to check if the import node has an available update and update the
referenced requirements.

Open the Requirements Definition for a Cruise Control Model project.

slreqCCProjectStart;

Load the crs_req requirement set.

 updateFromDocument

3-181

rs = slreq.load("crs_req");

Get a handle to the import node of the requirement set.

topRef = children(rs);

Check if the import node has an available update.

tf = hasNewUpdate(topRef)

tf = logical
 1

A result of 1 means that topRef has been updated since the last time it was imported. Update the
referenced requirements under the import node.

[status,changelist] = updateFromDocument(topRef)

status =
'Update completed. Refer to Comments on Import1.'

changelist =
 'Updated: CC003_01. Properties: description
 Updated: CC003_02. Properties: description
 Updated: CC003_03. Properties: description
 Updated: CC003_04. Properties: description
 Updated: Cruise control buttons. Properties: description
 Updated: Cruise control mode indicator. Properties: description
 Updated: Cruise control modes. Properties: description
 Updated: Dashboard image. Properties: description
 Updated: Deactivating cruise control. Properties: description
 Updated: Disabling cruise control. Properties: description
 Updated: Enabling cruise control. Properties: description
 Updated: Other inputs. Properties: description
 Updated: ROM. Properties: description
 Updated: Resuming cruise control. Properties: description
 Updated: System Inputs. Properties: description
 Updated: System outputs. Properties: description
 Updated: Throttle value calculation. Properties: description
 '

Tips
• You can use updateReferences to update the referenced requirements in a requirement set by

specifying the external requirements document identifier.

Version History
Introduced in R2019a

See Also
slreq.Reference | slreq.import | updateReferences | hasNewUpdate

3 Methods

3-182

Topics
“Update Imported Requirements”

 updateFromDocument

3-183

add
Class: slreq.ReqSet
Package: slreq

Add requirements to requirement set

Syntax
req = add(rs)
req = add(rs,"Artifact",artifactName)
req = add(___ ,reqProperty,value,...,refPropertyN,valueN)

Description
req = add(rs) adds a requirement to the requirement set rs and returns a handle to the
requirement.

req = add(rs,"Artifact",artifactName) adds a referenced requirement associated with the
external requirements document, artifactName.

req = add(___ ,reqProperty,value,...,refPropertyN,valueN) adds a requirement or a
referenced requirement to the requirement set with properties and property values specified by
reqProperty and value, respectively.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

reqProperty — Requirement property name
string scalar | character vector

Requirement or referenced requirement property name, specified as a string scalar or a character
vector.

You can only enter an slreq.Requirement property on page 2-76 or slreq.Reference property
on page 2-65 where the SetAccess attribute is public.
Example: "Summary"

value — Requirement property value
string scalar | character vector

Requirement or referenced requirement property value, specified as an string scalar or a character
vector.

artifactName — External requirements document name
string scalar | character vector

3 Methods

3-184

External requirements document name, specified as a string scalar or a character vector.

Output Arguments
req — Requirement
slreq.Requirement object | slreq.Reference object

Requirement or referenced requirement, returned as an slreq.Requirement or an
slreq.Reference object.

Examples

Add a Requirement to a Requirement Set

This example shows how to add a requirement to a requirement set.

Load the requirement set myReqSet, which does not contain any requirements.

rs = slreq.load("myReqSet");

Use the add method to add a requirement to the requirement set.

req = add(rs)

req =
 Requirement with properties:

 Type: 'Functional'
 Id: '#2'
 Summary: ''
 Description: ''
 Keywords: {}
 Rationale: ''
 CreatedOn: 01-Sep-2022 13:59:48
 CreatedBy: 'batserve'
 ModifiedBy: 'batserve'
 IndexEnabled: 1
 IndexNumber: []
 SID: 2
 FileRevision: 1
 ModifiedOn: 01-Sep-2022 13:59:48
 Dirty: 1
 Comments: [0x0 struct]
 Index: '1'

Cleanup

Discard the requirement set without saving.

discard(rs);

 add

3-185

Add a Referenced Requirement to a Requirement Set

This example shows how to add a referenced requirement to a requirement set.

Open the CruiseRequirementsExample project and load the crs_req requirement set.

slreqCCProjectStart;
rs = slreq.load("crs_req");

Use the add method to add a referenced requirement to the requirement set as an Import node.
Associate the Import node with the crs_req.docx file as the external requirements artifact.

ref = add(rs,"Artifact","crs_req.docx")

ref =
 Reference with properties:

 Id: ''
 CustomId: ''
 Artifact: 'crs_req.docx'
 ArtifactId: ''
 Domain: 'linktype_rmi_word'
 UpdatedOn: 22-Feb-2022 16:16:54
 CreatedOn: 22-Feb-2022 16:16:54
 CreatedBy: ''
 ModifiedBy: ''
 IsLocked: 1
 Summary: ''
 Description: ''
 Rationale: ''
 Keywords: {}
 Type: 'Functional'
 IndexEnabled: 1
 IndexNumber: []
 SID: 32
 FileRevision: 1
 ModifiedOn: 22-Feb-2022 16:16:54
 Dirty: 0
 Comments: [0×0 struct]
 Index: 'Import2'

Specify Properties when Adding Requirements to a Requirement Set

This example shows how to specify properties when adding a requirement to a requirement set.

Load the requirement set myReqSet, which does not contain any requirements.

rs = slreq.load("myReqSet");

Use the add method to add a requirement to the requirement set. Set the requirement summary to
New Req and set the requirement description to My new requirement.

req = add(rs,"Summary","New Req","Description","My new requirement")

req =
 Requirement with properties:

3 Methods

3-186

 Type: 'Functional'
 Id: '#2'
 Summary: 'New Req'
 Description: 'My new requirement'
 Keywords: {}
 Rationale: ''
 CreatedOn: 01-Sep-2022 13:59:50
 CreatedBy: 'batserve'
 ModifiedBy: 'batserve'
 IndexEnabled: 1
 IndexNumber: []
 SID: 2
 FileRevision: 1
 ModifiedOn: 01-Sep-2022 13:59:50
 Dirty: 1
 Comments: [0x0 struct]
 Index: '1'

Cleanup

Discard the requirement set without saving.

discard(rs);

Specify Properties when Adding Referenced Requirements to a Requirement Set

This example shows how to specify properties when adding a referenced requirement to a
requirement set.

Open the CruiseRequirementsExample project and load the crs_req requirement set.

slreqCCProjectStart;
rs = slreq.load("crs_req");

Use the add method to add a referenced requirement to the requirement set as an Import node.
Associate the Import node with the crs_req.docx file as the external requirements artifact. Set the
requirement summary to New Import Node and set the requirement description to My new Import
node.

ref = add(rs,"Artifact","crs_req.docx","Summary","New Import Node","Description","My new Import node")

ref =
 Reference with properties:

 Id: ''
 CustomId: ''
 Artifact: 'crs_req.docx'
 ArtifactId: ''
 Domain: 'linktype_rmi_word'
 UpdatedOn: 22-Feb-2022 16:19:26
 CreatedOn: 22-Feb-2022 16:19:26
 CreatedBy: ''
 ModifiedBy: ''
 IsLocked: 1

 add

3-187

 Summary: 'New Import Node'
 Description: 'My new Import node'
 Rationale: ''
 Keywords: {}
 Type: 'Functional'
 IndexEnabled: 1
 IndexNumber: []
 SID: 32
 FileRevision: 1
 ModifiedOn: 22-Feb-2022 16:19:26
 Dirty: 0
 Comments: [0×0 struct]
 Index: 'Import2'

Tips
• To add a requirement as a child of another requirement, use slreq.Requirement.add. To add a

referenced requirement as a child of another referenced requirement, use
slreq.Reference.add. To add a justification as a child of another justification, use
slreq.Justification.add.

Version History
Introduced in R2017b

See Also
slreq.ReqSet | slreq.Reference | slreq.Requirement | slreq.Requirement.add |
slreq.Reference.add | slreq.Justification.add

3 Methods

3-188

addAttribute
Class: slreq.ReqSet
Package: slreq

Add custom attribute to requirement set

Syntax
addAttribute(rs,name,type)
addAttribute(rs,name,'Checkbox','DefaultValue',value)
addAttribute(rs,name,'Combobox','List',options)
addAttribute(rs, ___ ,'Description',descr)

Description
addAttribute(rs,name,type) adds a custom attribute with the name specified by name and the
custom attribute type specified by type to the requirement set rs.

addAttribute(rs,name,'Checkbox','DefaultValue',value) adds a Checkbox custom
attribute with the name specified by name and the default value specified by value to the
requirement set rs.

addAttribute(rs,name,'Combobox','List',options) adds a Combobox custom attribute
with the name specified by name, and the list options specified by options to the requirement set
rs.

addAttribute(rs, ___ ,'Description',descr) adds a custom attribute with the name
specified by name, the type specified by type, and the description specified by descr to the
requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

type — Custom attribute type
'Edit' | 'Checkbox' | 'Combobox' | 'DateTime'

Custom attribute type, specified as a character array. The valid custom attribute types are Edit,
Checkbox, Combobox, and DateTime.

descr — Custom attribute description
character array

 addAttribute

3-189

Custom attribute description, specified as a character array.

value — Checkbox default value
false (default) | true

Checkbox default value, specified as a logical 1 (true) or 0 (false).

options — Combobox list options
cell array

Combobox list options, specified as a cell array. The list of options is valid only if 'Unset' is the first
entry. 'Unset' indicates that the user hasn't chosen an option from the combo box. If the list does
not start with 'Unset', it will be automatically appended as the first entry.
Example: {'Unset','A','B','C'}

Examples

Add Custom Attribute to Requirement Set

This example shows how to add a custom attribute of all four types to a requirement set, Edit,
Checkbox, Combobox, and DateTime, and how to add a custom attribute with a description.

Add an Edit Custom Attribute

Load crs_req_func_spec, which describes a cruise control system and assign it to a variable.

rs = slreq.load('crs_req_func_spec');

Add an Edit custom attribute. Confirm that the attribute was successfully added by using
inspectAttribute.

addAttribute(rs,'MyEditAttribute','Edit');
atrb = inspectAttribute(rs,'MyEditAttribute')

atrb = struct with fields:
 name: 'MyEditAttribute'
 type: Edit
 description: ''

Add a Checkbox Custom Attribute

Add a Checkbox custom attribute with the default value true. Confirm that the attribute was
successfully added by using inspectAttribute.

addAttribute(rs,'MyCheckbox','Checkbox','DefaultValue',true);
atrb2 = inspectAttribute(rs,'MyCheckbox')

atrb2 = struct with fields:
 name: 'MyCheckbox'
 type: Checkbox
 description: ''
 default: 1

3 Methods

3-190

Add a Combobox Custom Attribute

Add a ComboBox custom attribute with the options Unset, A, B, and C. Confirm that the attribute was
successfully added by using inspectAttribute.

addAttribute(rs,'MyCombobox','Combobox','List',{'Unset','A','B','C'});
atrb3 = inspectAttribute(rs,'MyCombobox')

atrb3 = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: ''
 list: {'Unset' 'A' 'B' 'C'}

Add a DateTime Custom Attribute

Add a DateTime custom attribute. Confirm that the attribute was successfully added by using
inspectAttribute.

addAttribute(rs,'MyDateTime','DateTime');
atrb4 = inspectAttribute(rs,'MyDateTime')

atrb4 = struct with fields:
 name: 'MyDateTime'
 type: DateTime
 description: ''

Add a Custom Attribute with a Description

Add an Edit custom attribute. Add a description to the custom attribute. Confirm that the attribute
was successfully added by using inspectAttribute.

addAttribute(rs,'MyEditAttribute2','Edit','Description',...
 'You can enter text as the custom attribute value.');
atrb5 = inspectAttribute(rs,'MyEditAttribute2')

atrb5 = struct with fields:
 name: 'MyEditAttribute2'
 type: Edit
 description: 'You can enter text as the custom attribute value.'

Add a ComboBox custom attribute with the options Unset, A, B, and C. Add a description to the
custom attribute. Confirm that the attribute was successfully added by using inspectAttribute.

addAttribute(rs,'MyCombobox2','Combobox','List',{'Unset','A','B','C'},'Description',...
 'This combobox attribute has 4 options.');
atrb6 = inspectAttribute(rs,'MyCombobox2')

atrb6 = struct with fields:
 name: 'MyCombobox2'
 type: Combobox
 description: 'This combobox attribute has 4 options.'
 list: {'Unset' 'A' 'B' 'C'}

 addAttribute

3-191

Cleanup

Clear the open requirement sets and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
slreq.ReqSet | deleteAttribute | inspectAttribute | updateAttribute

Topics
“Manage Custom Attributes for Requirements by Using the Requirements Toolbox API”

3 Methods

3-192

addJustification
Class: slreq.ReqSet
Package: slreq

Add justifications to requirement set

Syntax
jt = addJustification(rs)
jt = addJustification(rs, 'PropertyName', PropertyValue)

Description
jt = addJustification(rs) adds a justification jt to the requirement set rs.

jt = addJustification(rs, 'PropertyName', PropertyValue)adds a justification jt to the
requirement set rs with additional properties specified by PropertyName and PropertyValue.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Output Arguments
jt — Justification object
slreq.Justification object

Justification added to the requirement set rs, returned as an slreq.Justification object.

Examples
Add Justifications to Requirement Set

This example shows how to add a justification to a requirement set.

Suppose that you have a requirement set rs. Add a justification to the requirement set.

jt1 = addJustification(rs)

jt1 =

 Justification with properties:

 Id: '70'
 Summary: ''
 Description: ''
 Keywords: [0×0 char]

 addJustification

3-193

 Rationale: ''
 CreatedOn: 16-Jan-2018 10:53:28
 CreatedBy: 'John Doe'
 ModifiedBy: 'Jane Doe'
 SID: 76
 FileRevision: 1
 ModifiedOn: 16-Feb-2018 12:50:43
 Dirty: 0
 Comments: [0×0 struct]

Add a justification to the requirement set and specify the summary and description.

jt2 = addJustification(rs, 'Summary', 'New justification', ...
'Description', 'Justify safety requirement')

jt2 =

 Justification with properties:

 Id: '71'
 Summary: 'New justification'
 Description: 'Justify safety requirement'
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 11-Feb-2018 11:45:12
 CreatedBy: 'John Doe'
 ModifiedBy: 'Jane Doe'
 SID: 77
 FileRevision: 1
 ModifiedOn: 12-Feb-2018 13:01:08
 Dirty: 0
 Comments: [0×0 struct]

Version History
Introduced in R2018b

See Also
justifyImplementation | justifyVerification | justifyImplementation |
justifyVerification

Topics
“Justify Requirements”

3 Methods

3-194

children
Class: slreq.ReqSet
Package: slreq

Get top-level items in requirement set

Syntax
reqs = children(rs)

Description
reqs = children(rs) returns the top-level items in the requirement set rs. The items can be
requirements, referenced requirements, or justifications.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Output Arguments
reqs — Top-level items in requirement set
slreq.Requirement array | slreq.Reference array | slreq.Justification array

Top-level items in the requirement set, returned as an array of slreq.Requirement,
slreq.Reference, or slreq.Justification array.

Examples

Get the Top-Level Items in a Requirement Set

This example shows how to get the top-level items in a requirement set.

Open the CruiseRequirementsExample project. Load the crs_req_func_spec requirement set.

slreqCCProjectStart;
rs = slreq.load("crs_req_func_spec");

Get the top-level items in the requirement set.

topItems = children(rs)

topItems=1×5 object
 1x5 heterogeneous BaseEditableItem (Requirement, Justification) array with properties:

 Id

 children

3-195

 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 IndexEnabled
 IndexNumber
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

Tips
• To get the child requirements of a requirement, use slreq.Requirement.children. To get the

child referenced requirements of a referenced requirement, use slreq.Reference.children.
To get the child justifications of a justification, use slreq.Justification.children.

Version History
Introduced in R2017b

See Also
slreq.ReqSet | slreq.Reference | slreq.Requirement | slreq.Justification |
slreq.Requirement.children | slreq.Reference.children |
slreq.Justification.children

3 Methods

3-196

close
Class: slreq.ReqSet
Package: slreq

Close a requirement set

Syntax
close(rs)

Description
close(rs) closes a requirement set.

Input Arguments
rs — Requirement set file
slreq.ReqSet object

Requirement set file, specified as an slreq.ReqSet object.

Examples
Close a Requirement Set

% Create a new requirement set file
rs1 = slreq.new('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Save the requirement set file
save(rs1);

% Close the requirement set file
close(rs1);

Version History
Introduced in R2018a

See Also
slreq.ReqSet

 close

3-197

createReferences
Class: slreq.ReqSet
Package: slreq

Create read-only references to requirement items in third-party documents

Syntax
createReferences(rs, pathToFile, Name, Value)
createReferences(rs, reqFormat, Name, Value)

Description
createReferences(rs, pathToFile, Name, Value) creates read-only references to
requirements content in an external document at pathToFile by using additional Name, Value
arguments to specify import options.

createReferences(rs, reqFormat, Name, Value) creates read-only references to
requirements content in an external document corresponding to the specified registered document
type specified by reqFormat by using additional Name, Value arguments to specify import options.

Input Arguments
rs — Requirement set file
slreq.ReqSet object

Requirement set file, specified as a slreq.ReqSet object.

pathToFile — File path
character vector

Path to the requirements document.
Example: 'C:\MATLAB\System_Requirements.docx'

reqFormat — Registered document type label
character vector

Custom registered document type label that you create by using a Custom Document Type extension
API.
Example: 'linktype_rmi_doors'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'columns', '[1 8]', 'RichText', true

3 Methods

3-198

ReqSet — Requirement Set
slreq.ReqSet object

The name of the existing requirement set that you import references to requirements into, specified
as the comma-separated pair of 'ReqSet' and a valid requirement set file name.
Example: 'ReqSet', 'My_Requirements_Set'

RichText — Requirements content imported as rich text
false (default) | true

Option to import requirements content as rich text, specified as the comma-separated pair consisting
of 'RichText' and true or false.
Example: 'RichText', true

bookmarks — Use custom bookmarks in Microsoft Word and Microsoft Excel
true | false

Option to use custom bookmarks in Microsoft Word documents and Microsoft Excel spreadsheets to
import requirements content, specified as the comma-separated pair consisting of 'bookmarks' and
true or false.
Example: 'bookmarks', false

match — Regular expression
character vector

Import requirements by using regular expression pattern matching, specified as the comma-
separated pair consisting of 'match' and a regular expression pattern.
Example: 'match', '^REQ\d+'

columns — Range of columns
double array

Range of columns to import. This option is applicable only for Microsoft Excel spreadsheets.
Example: 'columns', [1 6]

rows — Range of rows
double array

Range of rows to import. This option is applicable only for Microsoft Excel spreadsheets.
Example: 'rows', [3 35]

attributes — Attribute names
cell array

Attribute names to import, specified as a cell array.

Note When importing requirements from a Microsoft Excel spreadsheet, the length of this cell array
must match the number of columns that you specified for import by using the 'columns' option.

Example: 'attributes', {'Test Status', 'Test Procedure'}

 createReferences

3-199

idColumn — ID Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the ID field in the
requirement set.
Example: 'idColumn', 1

summaryColumn — Summary Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Summary field in the
requirement set.
Example: 'summaryColumn', 4

keywordsColumn — Keywords Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Keywords field in the
requirements set.
Example: 'keywordsColumn', 3

descriptionColumn — Description Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Description field in
the requirements set.
Example: 'descriptionColumn', 2

rationaleColumn — Rationale Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Rationale field in the
requirements set.
Example: 'rationaleColumn', 5

Examples
Create Read-Only References to Requirements in Microsoft Office Documents

% Create a new requirement set and save it

rs = slreq.new('newReqSet');
save(rs);

% Create read-only rich text references to requirements
% in a Word document
createReferences(rs, 'C:\Work\Requirements_Spec.docx', ...
'RichText', true);

% Create read-only plain text references to requirements
% in an Excel spreadsheet
createReferences(rs, 'C:\Work\Design_Spec.xlsx', ...

3 Methods

3-200

'columns', [2 6], 'rows', [3 32], 'idColumn', 2, ...
'summaryColumn', 3);

Version History
Introduced in R2018a

See Also
slreq.ReqSet | slreq.Reference | slreq.import

 createReferences

3-201

discard
Class: slreq.ReqSet
Package: slreq

Close requirement set without saving

Syntax
discard(rs)

Description
discard(rs) closes the requirement set rs without saving.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Examples

Discard Changes to a Requirement Set

This example shows how to discard changes to a requirement set without saving.

Open the CruiseRequirementsExample project. Load the crs_req_func_spec requirement set.

slreqCCProjectStart;
rs = slreq.load("crs_req_func_spec");

Set the description of the requirement set to crs_req_func_spec.

rs.Description = "crs_req_func_spec"

rs =
 ReqSet with properties:

 Description: 'crs_req_func_spec'
 Name: 'crs_req_func_spec'
 Filename: 'C:\TEMP\Bdoc22b_2054784_11640\mlx_to_docbook1\bml.batserve.041884\MATLAB\Projects\examples\CruiseRequirementsExample6\documents\crs_req_func_spec.slreqx'
 Revision: 66
 Dirty: 1
 CustomAttributeNames: {}
 CreatedBy: 'itoy'
 CreatedOn: 27-Feb-2017 10:20:39
 ModifiedBy: 'Shashidhar'
 ModifiedOn: 13-Jul-2021 10:50:42

3 Methods

3-202

Discard the changes to the requirement set without saving.

discard(rs);

Tips
• You can also use close to close a requirement set, which prompts you to save the requirement set

before closing.
• You can use save to save the requirement set before discarding.
• You can use slreq.clear to close all requirement sets and link sets without saving and close the

Requirements Editor.

Version History
Introduced in R2017b

See Also
slreq.clear | close | save | slreq.ReqSet

 discard

3-203

deleteAttribute
Class: slreq.ReqSet
Package: slreq

Delete custom attribute from requirement set

Syntax
deleteAttribute(rs,name,'Force',true)
deleteAttribute(rs,name,'Force',false)

Description
deleteAttribute(rs,name,'Force',true) deletes the custom attribute specified by name from
the requirement set rs, even if the custom attribute is used by requirements in the requirement set.

deleteAttribute(rs,name,'Force',false) deletes the custom attribute specified by name
from the requirement set rs only if the custom attribute is not used by requirements in the
requirement set.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

Examples

Delete Custom Attribute

This example shows how to delete a custom attribute.

Load crs_req_func_spec, which is the requirement file for a cruise control system. Find a
requirement set in the files.

slreq.load('crs_req_func_spec');
rs = slreq.find('Type','ReqSet');

Add an Edit custom attribute to the requirement set. Confirm that it was successfully added by
accessing the CustomAttributeNames property for the requirement set.

addAttribute(rs,'MyCheckbox','Checkbox')
atrb1 = rs.CustomAttributeNames

3 Methods

3-204

atrb1 = 1x1 cell array
 {'MyCheckbox'}

Find a requirement in the requirement set. Set the custom attribute value for the requirement using
setAttribute.

req = find(rs,'ID','#1');
setAttribute(req,'MyCheckbox',true)

The custom attribute MyCheckbox is now used by a requirement. Delete the requirement by using
deleteAttribute with 'Force' set to true. Confirm the deletion by accessing the
CustomAttributeNames property for the requirement set.

deleteAttribute(rs,'MyCheckbox','Force',true)
atrb2 = rs.CustomAttributeNames

atrb2 =

 0x0 empty cell array

Only Delete Custom Attribute if the Attribute is Unused

Add an Edit custom attribute to the requirement set. The attribute is unused because the value is
not set for any links. Confirm that it added by accessing the CustomAttributeNames property for
the requirement set.

addAttribute(rs,'MyEditAttribute','Edit')
atrb3 = rs.CustomAttributeNames

atrb3 = 1x1 cell array
 {'MyEditAttribute'}

You can delete the attribute only if the attribute is unused by setting Force to false. If the attribute
is used by links, then an error will occur. Confirm the deletion by accessing the
CustomAttributeNames property for the requirement set.

deleteAttribute(rs,'MyEditAttribute','Force',false)
atrb4 = rs.CustomAttributeNames

atrb4 =

 0x0 empty cell array

Cleanup

Clean up commands. Clear the open requirement sets and close the open models without saving
changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

 deleteAttribute

3-205

See Also
slreq.ReqSet | addAttribute | inspectAttribute | updateAttribute

Topics
“Manage Custom Attributes for Requirements by Using the Requirements Toolbox API”

3 Methods

3-206

explore
Class: slreq.ReqSet
Package: slreq

Open requirement set in Requirements Editor

Syntax
explore(rs)

Description
explore(rs) opens the requirement set rs in the Requirements Editor. This function only works
if the requirement set is loaded.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Examples

Open a Requirement Set in the Requirements Editor

This example shows how to open a Requirement Set in the Requirements Editor.

Open the CruiseRequirementsExample project and load the crs_req requirement set.

slreqCCProjectStart;
rs = slreq.load('crs_req');

Open the requirement set in the Requirements Editor.

explore(rs)

Tips
• You can also use slreq.open to open a Requirement Set in the Requirements Editor. This

function loads the requirement set if it is not loaded.

Version History
Introduced in R2017b

 explore

3-207

See Also
slreq.ReqSet | slreq.load | slreq.open

3 Methods

3-208

exportToVersion
Class: slreq.ReqSet
Package: slreq

Export requirement set to previous MATLAB version

Syntax
tf = exportToVersion(rs,name,version)

Description
tf = exportToVersion(rs,name,version) saves a copy of the requirement set rs with the file
name name that is compatible with the MATLAB version version. The function returns 1 if the file
exports. The function saves the file in the current folder. If the requirement set has an associated link
set, exportToVersion also exports the link set and saves it in the current folder.

Note You can export requirement sets only to version R2017b or later.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

name — File name for exported requirement set
string scalar | character vector

File name for the exported requirement set, specified as a string scalar or character vector.

version — MATLAB version to export to
string scalar | character vector

MATLAB version to export to, specified as a string scalar or character vector.

You can export to version R2017b or later.
Example: tf = exportToVersion(rs,"newLinkSet","R2021a")

Output Arguments
tf — Export success status
0 | 1

Export success status, returned as a logical 1 (true) or 0 (false).
Data Types: logical

 exportToVersion

3-209

Examples

Export a Requirement Set to a Previous Version of MATLAB

This example shows how to export a requirement set to a file that is compatible with a previous
version of MATLAB.

Open the CruiseRequirementsExample project and load the crs_req requirement set.

slreqCCProjectStart;
rs = slreq.load("crs_req");

Export the requirement set to a new file that is compatible with MATLAB R2020a. Name the new file
crs_req_2020a. The exportToVersion function also exports the link set associated with the
requirement set using the same file name.

tf = exportToVersion(rs,"crs_req_2020a","R2020a")

tf = logical
 1

Tips
• You can export a link set to a previous version with slreq.LinkSet.exportToVersion.

Version History
Introduced in R2018a

See Also
slreq.ReqSet | slreq.LinkSet.exportToVersion

Topics
“Export Requirement Sets and Link Sets to Previous Versions of Requirements Toolbox”

3 Methods

3-210

find
Class: slreq.ReqSet
Package: slreq

Find requirements in requirement set that have matching attribute values

Syntax
myReq = find(rs, 'PropertyName', 'PropertyValue')

Description
myReq = find(rs, 'PropertyName', 'PropertyValue') finds and returns an
slreq.Requirement object myReq in the requirement set rs specified by the properties matching
PropertyName and PropertyValue. Property name matching is case-insensitive.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as a slreq.ReqSet object.

Output Arguments
myReq — Requirement object
slreq.Requirement object

Requirement, returned as an slreq.Requirement object.

Examples
Find Requirements That Have Matching Attribute Values

% Load a requirement set file
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Find all editable requirements in the requirement set
allReqs = find(rs, 'Type', 'Requirement');

% Find all referenced requirements in the requirement set
allRefs = find(rs, 'Type', 'Reference');

% Find all requirements with a certain ID
matchedReqs = find(rs, 'ID', 'R1.1');

Find Requirements by Using Regular Expression Matching

You can search for requirements in your requirement sets by constructing regular expression search
patterns by using the tilde (~) symbol.

 find

3-211

% Load a requirement set file
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Find all requirements that correspond to the controller
controllerReqs = find(rs, 'Type', 'Requirement', 'Summary', '~Controller(?i)\w*')

controllerReqs =

 1×19 Requirement array with properties:

 Id
 Summary
 Keywords
 Description
 Rationale
 SID
 CreatedBy
 CreatedOn
 ModifiedBy
 ModifiedOn
 FileRevision
 Dirty
 Comments

For more information on constructing regular expression search patterns, see “Steps for Building
Expressions”.

Version History
Introduced in R2018a

See Also
slreq.ReqSet | slreq.find

3 Methods

3-212

getImplementationStatus
Class: slreq.ReqSet
Package: slreq

Query requirement set implementation status summary

Syntax
status = getImplementationStatus(rs)

Description
status = getImplementationStatus(rs) returns the implementation status for the
requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Output Arguments
status — Requirement set implementation status summary
structure

The implementation status summary for the requirements in the requirement set, returned as a
MATLAB structure containing these fields.

total — Total number of requirements
double

The total number of Functional requirements in the requirement set, returned as a double.

implemented — Implemented requirements
double

The total number of implemented requirements in the requirement set, returned as a double.

justified — Justified requirements
double

The total number of requirements justified for implementation in the requirement set, returned as a
double.

none — Unimplemented requirements
double

The total number of unimplemented requirements in the requirement set, returned as a double.

 getImplementationStatus

3-213

Examples
Get Implementation Status Summary of a Requirement Set

% Load a requirement set file
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Get the implementation status summary of the requirement set rs
implStatus = getImplementationStatus(rs)

implStatus =

 struct with fields:

 total: 25
 implemented: 18
 justified: 5
 none: 2

Version History
Introduced in R2018b

See Also
updateImplementationStatus

3 Methods

3-214

getPostLoadFcn
Class: slreq.ReqSet
Package: slreq

Get contents of PostLoadFcn callback

Syntax
callback = getPostLoadFcn(rs)

Description
callback = getPostLoadFcn(rs) returns the contents of the PostLoadFcn callback for the
requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Output Arguments
callback — Contents of PostLoadFcn callback
character vector

Contents of the PostLoadFcn callback script for the requirement set, returned as a character vector.

Examples

Get and Set PostLoadFcn Callback

This example shows how to get and set the PostLoadFcn callback for a requirement set.

Add the current folder to the path.

addpath(pwd)

Open a project that contains an algorithm to calculate the shortest path between two nodes on a
graph. For more information, see “Verify a MATLAB Algorithm by Using Requirements-Based Tests”.

slreqShortestPathProjectStart;

Open the shortest_path_tests_reqs requirement set. The requirement set contains test
requirements that describe the functional behavior that must be tested by a test case in order to
verify the shortest_path algorithm in the project.

testReqs = slreq.open("shortest_path_tests_reqs");

 getPostLoadFcn

3-215

Register the postLoadTestReqs script as the PostLoadFcn callback.

setPostLoadFcn(testReqs,"postLoadTestReqs");

Confirm that the postLoadTestReqs script is the PostLoadFcn callback for the
shortest_path_tests_reqs requirement set.

callbackScript = getPostLoadFcn(testReqs)

callbackScript =
'postLoadTestReqs'

Save and close the shortest_path_tests_reqs requirement set, then re-open the requirement
set. The PostLoadFcn callback executes.

save(testReqs);
slreq.clear;
testReqs = slreq.load("shortest_path_tests_reqs");

The postLoadTestReqs script opens the test file associated with the test requirements,
graph_unit_tests.m and imports the Requirements Editor view settings from
myViewSettings.mat.

type postLoadTestReqs.m

open("graph_unit_tests.m");
slreq.importViewSettings("myViewSettings.mat",1);

Version History
Introduced in R2022a

See Also
slreq.ReqSet | setPostLoadFcn | setPreSaveFcn | getPreSaveFcn

Topics
“Execute Code When Loading and Saving Requirement Sets”

3 Methods

3-216

getPreSaveFcn
Class: slreq.ReqSet
Package: slreq

Get contents of PreSaveFcn callback

Syntax
callback = getPreSaveFcn(rs)

Description
callback = getPreSaveFcn(rs) returns the contents of the PreSaveFcn callback for the
requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Output Arguments
callback — Contents of PreSaveFcn callback
character vector

Contents of the PreSaveFcn callback for the requirement set, returned as a character vector.

Examples

Get and Set PreSaveFcn Callback

This example shows how to get and set the PreSaveFcn callback for a requirement set.

Add the current folder to the path.

addpath(pwd)

Open a project that contains an algorithm to calculate the shortest path between two nodes on a
graph. For more information, see “Verify a MATLAB Algorithm by Using Requirements-Based Tests”.

slreqShortestPathProjectStart;

Open the shortest_path_tests_reqs requirement set. The requirement set contains test
requirements that describe the functional behavior that must be tested by a test case in order to
verify the shortest_path algorithm in the project.

testReqs = slreq.open("shortest_path_tests_reqs");

 getPreSaveFcn

3-217

Register the preSaveTestReqs script as the PreSaveFcn callback.

setPreSaveFcn(testReqs,"preSaveTestReqs");

Confirm that the preSaveTestReqs script is the PreSaveFcn callback for the
shortest_path_tests_reqs requirement set.

callbackScript = getPreSaveFcn(testReqs)

callbackScript =
'preSaveTestReqs'

Save the shortest_path_tests_reqs requirement set to execute the callback.

save(testReqs);

The preSaveTestReqs script saves the current Requirements Editor view settings to a MAT-file
called myViewSettings.mat.

type preSaveTestReqs.m

slreq.exportViewSettings("myViewSettings.mat");

Version History
Introduced in R2022a

See Also
slreq.ReqSet | setPostLoadFcn | setPreSaveFcn | getPostLoadFcn

Topics
“Execute Code When Loading and Saving Requirement Sets”

3 Methods

3-218

getVerificationStatus
Class: slreq.ReqSet
Package: slreq

Query requirement set verification status summary

Syntax
status = getVerificationStatus(rs)

Description
status = getVerificationStatus(rs) returns the verification status summary of requirements
in the requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Output Arguments
status — Requirement set verification status summary
structure

The verification status summary for the requirement set, returned as a MATLAB structure containing
these fields.

total — Total number of requirements
double

The total number of requirements in the requirement set with Verify links, returned as a double.

passed — Passed requirements
double

The total number of requirements in the requirement set that passed the tests associated with them,
returned as a double.

failed — Failed requirements
double

The total number of requirements in the requirement set that failed the tests associated with them,
returned as a double.

unexecuted — Unexecuted requirements
double

 getVerificationStatus

3-219

The total number of requirements in the requirement set with unexecuted associated tests, returned
as a double.

justified — Justified requirements
double

The total number of requirements justified for verification in the requirement set, returned as a
double.

none — Unlinked requirements
double

The total number of requirements without links to verification objects in the requirement set,
returned as a double.

Examples
Get Verification Status Summary of a Requirement Set

% Load a requirement set file
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Get the verification status summary of the requirements in rs
verifStatus = getVerificationStatus(rs)

verifStatus =

 struct with fields:

 total: 25
 passed: 10
 failed: 5
 unexecuted: 4
 justified: 1
 none: 5

Version History
Introduced in R2018b

See Also
updateVerificationStatus

3 Methods

3-220

importFromDocument
Class: slreq.ReqSet
Package: slreq

Import editable requirements from external documents

Syntax
importFromDocument(rs, pathToFile, Name,Value)

Description
importFromDocument(rs, pathToFile, Name,Value) imports editable requirements with
contents duplicated from an external document at pathToFile using by additional Name,Value
arguments to specify import options.

Input Arguments
rs — Requirement set file
slreq.ReqSet object

Requirement set file, specified as a slreq.ReqSet object.

pathToFile — File path
character vector

Path to the requirements document that you want to import editable requirements from.
Example: 'C:\MATLAB\System_Requirements.docx'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ReqSet','design_specs.slreqx'

AsReference — Option to import as references
true (default) | false

Option to import requirements as references, specified as a Boolean value. The value false is
supported only for import from Microsoft Office documents.

attr2reqprop — ReqIF attribute mapping
containers.Map object

Import from ReqIF format, specifying the attribute mapping as a comma-separated pair consisting of
'attr2reqprop' and a containers.Map object. For example:

 importFromDocument

3-221

attrMap = containers.Map('KeyType','char','ValueType','char')
attrMap('SourceID') = 'Custom ID'; % Built-in attribute
attrMap('ReqIF.ChapterName') = 'Summary'; % Built-in attribute
attrMap('Data Class') = 'MyDataClass'; % Custom attribute

slreq.import('myfile.reqif','attr2reqprop',attrMap);

Example: slreq.import('myfile.reqif','attr2reqprop',attrMap);

attributeColumn — Custom Attributes Column
double array

Column in the Microsoft Excel spreadsheet that you want to map as custom attributes of the
requirements in your requirement set, specified as a double array.
Example: 'attributeColumn',[4 6]

attributes — Attribute names
cell array

Attribute names for custom attribute columns, specified as a cell array of character vectors.

Note When importing requirements from a Microsoft Excel spreadsheet, the length of this cell array
must match the number of columns specified for import using the attributeColumn argument.

Example: 'attributes',{'Test Status','Test Procedure'}

bookmarks — Option to import requirements using bookmarks
0 (default) | 1

Option to import requirements content using user-defined bookmarks, specified as a 1 or 0 of data
type logical.

By default, Requirements Toolbox sets the value to 1 for Microsoft Word documents and 0 for
Microsoft Excel spreadsheets.
Example: 'bookmarks',false

columns — Range of columns
double array

Range of columns to import from Microsoft Excel spreadsheet, specified as a double array.
Example: 'columns',[1 6]

createdByColumn — Created By Column
double

Column in the Microsoft Excel spreadsheet that you want to map to the CreatedBy property of the
requirements in your requirement set, specified as a double.
Example: 'createdByColumn',5

descriptionColumn — Description Column
double

3 Methods

3-222

Column in the Microsoft Excel spreadsheet that you want to map to the Description property of the
requirements in your requirement set, specified as a double.
Example: 'descriptionColumn',2

idColumn — ID Column
double

Column in the Microsoft Excel spreadsheet that you want to map to the ID property of the
requirements in your requirement set, specified as a double.
Example: 'idColumn',1

keywords — Attribute to map to Keywords
string scalar | character vector

Name of the attribute from the external document that you want to map to the Keywords property
for the imported requirements.

Use this argument when you import from IBM Rational DOORS or custom document types.
Example: "keywords","Requirement Keywords"

keywordsColumn — Keywords Column
double

Column in the Microsoft Excel spreadsheet that you want to map to the Keywords property of the
requirements in your requirement set, specified as a double.
Example: 'keywordsColumn',3

match — Regular expression pattern
character vector

Regular expression pattern for ID search in Microsoft Office documents.
Example: 'match','^REQ\d+'

modifiedByColumn — Modified By Column
double

Column in the Microsoft Excel spreadsheet that you want to map to the ModifiedBy property of the
requirements in your requirement set, specified as a double.
Example: 'modifiedByColumn',6

postImportFcn — Custom post-import callback
string scalar | character vector

Custom post-import callback script name to use during import, specified as a string scalar or
character vector.

The script that you assign to this callback executes after you import or update requirements.
Example: "postImportFcn","myPostImportScript"

preImportFcn — Custom pre-import callback
string scalar | character vector

 importFromDocument

3-223

Custom pre-import callback script name to use during import, specified as a string scalar or
character vector.

The script that you assign to this callback executes before you import or update requirements.
Example: "preImportFcn","myPreImportScript"

rationale — Attribute to map to Rationale
string scalar | character vector

Name of the attribute from the external document that you want to map to the Rationale property
for the imported requirements.

Use this argument when you import from IBM Rational DOORS or custom document types.
Example: "rationale","Requirement Rationale"

rationaleColumn — Rationale Column
double

Column in the Microsoft Excel spreadsheet that you want to map to the Rationale property of the
requirements in your requirement set, specified as a double.
Example: 'rationaleColumn',5

ReqSet — Requirement Set
character vector

The name for the requirement set that you import requirements into, specified as a character vector.

If the requirement set exists, the requirements import under a new Import node. If the requirement
set does not exist, Requirements Toolbox creates it.
Example: 'ReqSet','My_Requirements_Set'

RichText — Option to import rich text requirements
false (default) | true

Option to import requirements as rich text, specified as a Boolean value.
Example: 'RichText',true

rows — Range of rows
double array

Range of rows to import from Microsoft Excel spreadsheet, specified as a double array.
Example: 'rows',[3 35]

sheet — Worksheet name
character vector

Worksheet name from Microsoft Excel workbook, specified as a character vector.
Example: 'sheet','Sheet1'

summaryColumn — Summary Column
double

3 Methods

3-224

Column in the Microsoft Excel spreadsheet that you want to map to the Summary property of the
requirements in your requirement set, specified as a double.
Example: 'summaryColumn',4

USDM — USDM Format Import Option
character vector

Import from Microsoft Excel spreadsheets specified in the USDM (Universal Specification Describing
Manner) standard format. Specify values as a character vector with the ID prefix optionally followed
by a separator character.
Example: 'RQ -' will match entries with IDs similar to RQ01, RQ01-2, RQ01-2-1 etc.

Examples
Import Editable Requirements from Microsoft Office Documents

% Create a new requirement set and save it
rs = slreq.new('newReqSet');
save(rs);

% Import editable requirements as rich text from a Word document
importFromDocument(rs, 'C:\Work\Requirements_Spec.docx', ...
 'RichText', true);

% Import editable requirements from an Excel spreadsheet
importFromDocument(rs, 'C:\Work\Design_Spec.xlsx', ...
'columns', [2 6], 'rows', [3 32], 'idColumn', 2, ...
'summaryColumn', 3);

For more information on importing requirements from Microsoft Office documents, see “Import
Requirements from Microsoft Office Documents”.

Version History
Introduced in R2018a

See Also
slreq.ReqSet | createReferences

 importFromDocument

3-225

importProfile
Class: slreq.ReqSet
Package: slreq

Assign profile to requirement set

Syntax
importProfile(rs,fileName)

Description
importProfile(rs,fileName) assigns the profile, fileName, to the requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

fileName — Profile file name
string scalar | character vector

Profile file name, specified as a string scalar or character vector.
Example: "myProfile.xml"

Examples

Import Profile and Get and Set Stereotype Properties

This example shows how to assign a profile to a requirement set and get and set stereotype property
values for requirements.

Save the location of the current folder as a variable.

initFolder = pwd;

Open the ShortestPath project.

slreqShortestPathProjectStart;

Load the shortest_path_tests_reqs requirement set.

rs = slreq.load("shortest_path_tests_reqs");

Assign the TestReqProfile profile to the shortest_path_tests_reqs requirement set.

importProfile(rs,strcat(initFolder,"\TestReqProfile"));

3 Methods

3-226

Find the requirement with index 2.1.1. Apply the TestRequirement stereotype to the requirement.

testReq = find(rs,Index="2.1.1");
testReq.Type = "TestReqProfile.TestRequirement";

Get the value of the Reviewed stereotype property.

val = getAttribute(testReq,"TestReqProfile.TestRequirement.Reviewed")

val = 0

Set the value of the Reviewed stereotype property to 1.

setAttribute(testReq,"TestReqProfile.TestRequirement.Reviewed",1)

Tips
• To assign profiles to link sets, use slreq.LinkSet.importProfile.

Version History
Introduced in R2022b

See Also
slreq.ReqSet | profiles | removeProfile

 importProfile

3-227

inspectAttribute
Class: slreq.ReqSet
Package: slreq

Get information about requirement set custom attribute

Syntax
atrb = inspectAttribute(rs,name)

Description
atrb = inspectAttribute(rs,name) returns a structure with information about the custom
attribute name specified by name in the requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

Output Arguments
atrb — Custom attribute information
struct

Custom attribute information, returned as a struct.

Examples

Get Requirement Set Custom Attribute Information

This example shows how to get information about a requirement set custom attribute.

Load crs_req_func_spec, which describes a cruise control system. Find a requirement set and
assign it to a variable.

slreq.load('crs_req_func_spec');
rs = slreq.find('Type','ReqSet');

Add a Checkbox custom attribute to the requirement set with a description. Use
inspectAttribute to get information about the custom attribute.

3 Methods

3-228

addAttribute(rs,'MyCheckbox','Checkbox','Description',...
 'This checkbox atrribute can be true or false.');
atrb = inspectAttribute(rs,'MyCheckbox')

atrb = struct with fields:
 name: 'MyCheckbox'
 type: Checkbox
 description: 'This checkbox atrribute can be true or false.'
 default: 0

Cleanup

Clear the open requirement sets and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
slreq.ReqSet | addAttribute | deleteAttribute | updateAttribute

Topics
“Manage Custom Attributes for Requirements by Using the Requirements Toolbox API”

 inspectAttribute

3-229

profiles
Class: slreq.ReqSet
Package: slreq

Get profiles assigned to requirement sets

Syntax
fileNames = profiles(rs)

Description
fileNames = profiles(rs) returns the file names of the profiles assigned to the requirement set
rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Output Arguments
fileNames — Profile file names
cell array

Profile file names, returned as a cell array of character vectors.

Examples

Get and Remove Profiles for a Requirement Set

This example shows how to get profiles assigned to a requirement set and remove profiles.

Load the myAddRequirements2 requirement set.

rs = slreq.load("myAddRequirements2");

Get the profiles assigned to the requirement set.

fileNames = profiles(rs)

fileNames = 1×1 cell array
 {'myAddProfile.xml'}

Remove the myAddProfile profile from the requirement set.

tf = removeProfile(rs,"myAddProfile.xml")

3 Methods

3-230

tf = logical
 1

Tips
• To get profiles assigned to link sets, use slreq.LinkSet.profiles.

Version History
Introduced in R2022b

See Also
slreq.ReqSet | importProfile | removeProfile

 profiles

3-231

removeProfile
Class: slreq.ReqSet
Package: slreq

Remove profile from requirement set

Syntax
tf = removeProfile(rs,fileName)

Description
tf = removeProfile(rs,fileName) removes the profile, fileName, from the requirement set
rs.

Note If you remove a profile, Requirements Toolbox applies these changes to requirements that used
a stereotype from the profile:

• Sets the requirement type to Functional
• Removes the stereotype properties and deletes the stereotype property values

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

fileName — Profile file name
string scalar | character vector

Profile file name, specified as a string scalar or character vector.
Example: "myProfile.xml"

Output Arguments
tf — Remove success status
0 | 1

Remove success status, returned as a 1 or 0 of data type logical.

Examples

3 Methods

3-232

Get and Remove Profiles for a Requirement Set

This example shows how to get profiles assigned to a requirement set and remove profiles.

Load the myAddRequirements2 requirement set.

rs = slreq.load("myAddRequirements2");

Get the profiles assigned to the requirement set.

fileNames = profiles(rs)

fileNames = 1×1 cell array
 {'myAddProfile.xml'}

Remove the myAddProfile profile from the requirement set.

tf = removeProfile(rs,"myAddProfile.xml")

tf = logical
 1

Tips
• To remove profiles from link sets, use slreq.LinkSet.removeProfile.

Version History
Introduced in R2022b

See Also
slreq.ReqSet | profiles | importProfile

 removeProfile

3-233

runTests
Class: slreq.ReqSet
Package: slreq

Run test cases linked to the requirement set

Syntax
status = runTests(rs)
status = runTests(rs,Name,Value)

Description
status = runTests(rs) runs the tests for the requirement set, rs linked with the test cases.

status = runTests(rs,Name,Value) selects the instances specified by the name-value pairs
Name and Value in the requirement set rs.

You can use runTests to run MATLAB unit tests, Simulink tests, and Simulink Design Verifier™
verifiables.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as a slreq.ReqSet object.

Name-Value Pair Arguments

Select — Options for searching under masks
'all' (default) | 'failed' | 'unexecuted'

Select one or more criteria for the tests execution, specified as the comma-separated pair consisting
of 'select' and one of these options:

• "all" — Select and run tests on all tests linked to the requirement set.
• "failed" — Select and run tests on failed tests linked to the requirement set.
• "unexecuted" — Select and run tests on unexecuted tests linked to the requirement set.

Example: runTests(rs, 'Select', 'failed')
Example: runTests(rs, 'Select', {'unexecuted', 'failed'})

Output Arguments
status — Requirement set verification status summary
structure

3 Methods

3-234

The verification status summary for the requirement set after the tests are run, returned as a
MATLAB structure containing these fields.

total — Total number of requirements
double

The total number of requirements in the requirement set with Verify links, returned as a double.

passed — Passed requirements
double

The total number of requirements in the requirement set that passed the tests associated with them,
returned as a double.

failed — Failed requirements
double

The total number of requirements in the requirement set that failed the tests associated with them,
returned as a double.

unexecuted — Unexecuted requirements
double

The total number of requirements in the requirement set with unexecuted associated tests, returned
as a double.

justified — Justified requirements
double

The total number of requirements justified for verification in the requirement set, returned as a
double.

none — Unlinked requirements
double

The total number of requirements without links to verification objects in the requirement set,
returned as a double.

Examples

Run Tests on a Requirement Set

addpath(fullfile(matlabroot,'examples','slrequirements','main'));
reqSet = slreq.open('counter_req.slreqx');
rmi register linktype_mymljunitresults;
externalSource.id = 'testCounterStartsAtZero';
externalSource.artifact = 'counterTests.m';
externalSource.domain = 'linktype_mymljunitresults';
requirement = reqSet.find('Type', 'Requirement', 'SID', 2);
link = slreq.createLink(requirement, externalSource);
status = runTests(reqSet)
status =

 struct with fields:

 runTests

3-235

 total: 3
 passed: 0
 failed: 0
 unexecuted: 1
 justified: 0
 none: 2

Verify a MATLAB Algorithm by Using Requirements-Based Tests

This example shows how to verify a MATLAB® algorithm by creating verification links from MATLAB
code lines in functions and tests to requirements. This example uses a project that contains an
algorithm to calculate the shortest path between two nodes on a graph.

Open the project.

slreqShortestPathProjectStart

Examine the Project Artifacts

The project contains:

• Requirement sets for functional and test requirements, located in the requirements folder
• A MATLAB algorithm, located in the src folder
• MATLAB unit tests, located in the tests folder
• Links from MATLAB code lines to requirements, stored .slmx files located in the src and tests

folders
• Scripts to automate project analysis, located in the scripts folder

Open the Functional Requirement Set

The shortest_path_func_reqs requirement set captures the functional behavior that the
shortest_path function requires. The requirements describe the nominal behavior and the
expected behavior for invalid conditions, such as when the inputs to the function are not valid. Open
the requirement set in the Requirements Editor.

funcReqs = slreq.open("shortest_path_func_reqs");

Use the Shortest Path Function

The shortest_path function tests the validity of the inputs to the function and then uses the
Djikstra algorithm to calculate the number of edges in the shortest path between two nodes on a
graph. The inputs to the function are an adjacency matrix that represents a graph, the starting node,
and the ending node. For example, consider this adjacency matrix that represents a graph with six
nodes.

A = [0 1 0 0 1 0;
 1 0 1 0 0 0;
 0 1 0 1 0 0;
 0 0 1 0 1 1;
 1 0 0 1 0 0;
 0 0 0 1 0 0];

Create a graph from the matrix and plot it.

3 Methods

3-236

G = graph(A);
plot(G,EdgeLabel=G.Edges.Weight)

Calculate the number of edges in the shortest path between nodes 1 and 6.

pathLength = shortest_path(A,1,6)

pathLength = 3

Open the Test Requirement Set

The shortest_path_tests_reqs requirement set contains test requirements that describe the
functional behavior that must be tested by a test case. The test requirements are derived from the
functional requirements. There are test requirements for the nominal behavior and for the invalid
conditions. Open the requirement set in the Requirements Editor.

testReqs = slreq.open("shortest_path_tests_reqs");

The class-based MATLAB unit tests in graph_unit_tests implement the test cases described in
shortest_path_tests_reqs. The class contains test methods based on the test requirements from
shortest_path_tests_reqs. The class also contains the verify_path_length method, which
the test cases use as a qualification method to verify that the expected and actual results are equal.
The class also contains static methods that create adjacency matrices for the test cases.

View the Verification Status

To view the verification status, in the Requirements Editor toolstrip, in the View section, click
Columns and select Verification Status. Three of the functional requirements and one test

 runTests

3-237

requirement are missing verification links. The verification status is yellow for each requirement,
which indicates that the linked tests have not run.

Run the tests and update the verification status for the requirement sets by using the runTests
method.

status1 = runTests(funcReqs);

Running graph_unit_tests
..........
Done graph_unit_tests

status2 = runTests(testReqs);

Running graph_unit_tests
..........

3 Methods

3-238

Done graph_unit_tests

The verification status is green to indicate that the linked tests passed. However, some of the
requirements do not have links to tests.

Identify Traceability Gaps in the Project

The functional and test requirements are linked to code lines in the shortest_path and
graph_unit_tests files, but the traceability is not complete. Use a traceability matrix to identify
requirements that are not linked to tests and to create links to make the requirements fully traceable.

Find the Missing Links with a Traceability Matrix

Create a traceability matrix for both requirement sets with the requirements on the top and the unit
tests on the left. For more information about traceability matrices, see “Track Requirement Links
with a Traceability Matrix”

mtxOpts = slreq.getTraceabilityMatrixOptions;
mtxOpts.topArtifacts = {'shortest_path_func_reqs.slreqx','shortest_path_tests_reqs.slreqx'};
mtxOpts.leftArtifacts = {'graph_unit_tests'};
slreq.generateTraceabilityMatrix(mtxOpts)

In the Filter Panel, in the Top section, filter the matrix to show only the functional requirements not
linked to tests by clicking:

• Top > Link > Missing Links
• Top > Type > Functional

In the Left section, show only the test functions in the graph_unit_tests file by clicking:

• Left > Type > Function
• Left > Attributes > Test

Click Highlight Missing Links in the toolstrip.

 runTests

3-239

The Traceability Matrix window shows the three functional requirements and one test requirement
that are missing verification links.

Create Verification Links for Requirements

The test requirement 2.1.3, Test for a graph that is a tree, is not linked to a test. A tree is
a graph in which any two nodes are only connected by one path.

The test case check_invalid_start_1 tests a tree graph by using the graph_straight_seq
static method to create the adjacency matrix. Use the graph_straight_seq method to view the
tree graph.

A = graph_unit_tests.graph_straight_seq;
G = graph(A);
plot(G,EdgeLabel=G.Edges.Weight)

3 Methods

3-240

Create a link from the Test for a graph that is a tree requirement to the
check_invalid_start_1 test case by using the traceability matrix you previously generated.

slreq.generateTraceabilityMatrix(mtxOpts)

Click the cell that corresponds to the requirement and the test and select Create. In the Create Link
dialog box, click Create.

 runTests

3-241

Update the verification status in the Requirements Editor by running the tests linked to the test
requirements. The check_invalid_start_1 test verifies the Test for a graph that is a
tree requirement.

status3 = runTests(testReqs);

Running graph_unit_tests
..........
Done graph_unit_tests

Additionally, three functional requirements do not have links to tests:

• Requirement 2.2.1: Returns -9 for invalid adjacency matrices
• Requirement 2.2.2: Returns -19 if the start node is encoded incorrectly
• Requirement 2.2.3: Returns -29 if end node is encoded incorrectly

There is a traceability gap for these requirements. You cannot fill this gap by creating links to tests
because there are no tests that verify these requirements.

Fix Coverage and Traceability Gaps by Authoring Tests

The three functional requirements that do not have links to tests do have links to lines of code in the
shortest_path function. Run the tests with coverage to determine if those lines of code in the
shortest_path function are covered by tests.

Run Tests with Coverage

Use the RunTestsWithCoverage script to run the tests with function and statement coverage and
view the coverage in a report. For more information, see “Generate Code Coverage Report in HTML
Format”.

3 Methods

3-242

RunTestsWithCoverage

Running graph_unit_tests
..........
Done graph_unit_tests

Code coverage report has been saved to:
 C:\Users\jdoe\MATLAB\Projects\examples\ShortestPath\coverageReport\index.html

Open the coverage report. The error code statements on lines 20, 25, and 30 are not covered by tests.

Note that the coverage gap for these code lines and the traceability gap for requirements 2.2.1, 2.2.2,
and 2.2.3 refer to the same error codes. You can close the coverage and traceability gaps
simultaneously by authoring tests for these lines of code and creating links to the requirements.

Improve Coverage by Authoring New Tests

Create tests that improve the coverage for the tests and verify requirements 2.2.1, 2.2.2, and 2.2.2.
Open the graph_unit_tests test file.

open("graph_unit_tests.m");

These functions test the three error codes. Copy and paste the code in line 4, in the test methods
section of the graph_unit_tests file, then save the file.

 runTests

3-243

function check_invalid_nonsquare(testCase)
 adjMatrix = zeros(2,3);
 startIdx = 1;
 endIdx = 1;
 expOut = -9;
 verify_path_length(testCase, adjMatrix, startIdx, endIdx, expOut, ...
 'Graph is not square');
end

function check_invalid_entry(testCase)
 adjMatrix = 2*ones(4,4);
 startIdx = 1;
 endIdx = 1;
 expOut = -9;
 verify_path_length(testCase, adjMatrix, startIdx, endIdx, expOut, ...
 'Adjacency matrix is not valid');
end

function check_invalid_noninteger_startnode(testCase)
 adjMatrix = zeros(4,4);
 startIdx = 1.2;
 endIdx = 1;
 expOut = -19;
 verify_path_length(testCase, adjMatrix, startIdx, endIdx, expOut, ...
 'Start node is not an integer');
end

function check_invalid_noninteger_endnode(testCase)
 adjMatrix = zeros(4,4);
 startIdx = 1;
 endIdx = 2.2;
 expOut = -29;
 verify_path_length(testCase, adjMatrix, startIdx, endIdx, expOut, ...
 'End node is not an integer');
end

Rerun the tests with coverage and open the coverage report.

RunTestsWithCoverage

Running graph_unit_tests
..........
Done graph_unit_tests

Code coverage report has been saved to:
 C:\Users\jdoe\MATLAB\Projects\examples\ShortestPath\coverageReport\index.html

The tests now cover the error code statements.

3 Methods

3-244

However, there is a statement on line 97 that the tests do not cover. The conditions that require the
tests to cover the statement on line 97 also cause the return on line 87 to execute, which means that
the statement on 97 is not reachable and is dead logic.

Fix Requirement Traceability Gaps

Regenerate the traceability matrix, apply the same filters from before, then click Highlight Missing
Links in the toolstrip.

slreq.generateTraceabilityMatrix(mtxOpts)

• Top > Link > Missing Links
• Top > Type > Functional
• Left > Type > Function
• Left > Attributes > Test

Create links between the error code requirements and the new tests.

 runTests

3-245

Update the verification status in the Requirements Editor by re-running the tests linked to both
requirement sets.

status4 = runTests(funcReqs);

Running graph_unit_tests
..........
Done graph_unit_tests

status5 = runTests(testReqs);

Running graph_unit_tests
..........
Done graph_unit_tests

All requirements have links to tests and all tests pass.

3 Methods

3-246

Trace Requirements in Generated Code

Use Embedded Coder® to generate code from the shortest_path algorithm and include
requirements comments that allow you to trace the requirements in the generated code. For more
information, see “Requirements Traceability for Code Generated from MATLAB Code”.

Create a code configuration object to generate code with a LIB build type.

cfg = coder.config("lib","ecoder",true);

Enable the code configuration parameter to include requirements comments in the generated code.

cfg.ReqsInCode = true;

Use coder.typeof (MATLAB Coder) to define a variable-sized double array with a maximum size of
100x100 and a scalar double to use as inputs in the generated code.

 runTests

3-247

mtxType = coder.typeof(ones(100,100),[],1);
scalarDblType = coder.typeof(1);

Generate C code from the shortest_path algorithm with the specified code configuration
parameters and input types. Create a code generation report and launch the report.

codegen shortest_path -config cfg -args {mtxType, scalarDblType, scalarDblType} -launchreport

Code generation successful: View report

The shortest_path.c file contains comments with the summary of the linked requirement, the full
file path of the shortest_path.m file, and the linked code lines.

Version History
Introduced in R2022a

See Also
getVerificationStatus | “Requirements Traceability for MATLAB Code”

3 Methods

3-248

save
Class: slreq.ReqSet
Package: slreq

Save a requirement set

Syntax
save(rs)
save(rs, filePath)

Description
save(rs) saves a requirement set by using its file name.

save(rs, filePath) saves a requirement set and updates its Name and Filename properties.

Input Arguments
rs — Requirement set file
slreq.ReqSet object

Requirement set file, specified as a slreq.ReqSet object.

filePath — File name and path
character vector

The file name and path of the requirement set, specified as a character vector.
Example: 'C:\MATLAB\myReqSet.slreqx'

Examples
Save Requirement Set File

% Create the requirement set file
rs = slreq.new('C:\MATLAB\My Requirement Set.slreqx');

% Save the requirement set file
save(rs);

% Save the requirement set file as another requirement set file
save(rs, 'C:\MATLAB\Another Requirement Set.slreqx');

Version History
Introduced in R2018a

 save

3-249

See Also
slreq.ReqSet

3 Methods

3-250

setPostLoadFcn
Class: slreq.ReqSet
Package: slreq

Assign PostLoadFcn callback script

Syntax
setPostLoadFcn(rs,callbackScript)

Description
setPostLoadFcn(rs,callbackScript) assigns the script specified by callbackScript as the
PostLoadFcn callback script for the requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

callbackScript — Name of script to register
string scalar | character vector

Name of the script to register as the PostLoadFcn callback for the requirement set, specified as a
string scalar or character vector.

Examples

Get and Set PostLoadFcn Callback

This example shows how to get and set the PostLoadFcn callback for a requirement set.

Add the current folder to the path.

addpath(pwd)

Open a project that contains an algorithm to calculate the shortest path between two nodes on a
graph. For more information, see “Verify a MATLAB Algorithm by Using Requirements-Based Tests”.

slreqShortestPathProjectStart;

Open the shortest_path_tests_reqs requirement set. The requirement set contains test
requirements that describe the functional behavior that must be tested by a test case in order to
verify the shortest_path algorithm in the project.

testReqs = slreq.open("shortest_path_tests_reqs");

Register the postLoadTestReqs script as the PostLoadFcn callback.

 setPostLoadFcn

3-251

setPostLoadFcn(testReqs,"postLoadTestReqs");

Confirm that the postLoadTestReqs script is the PostLoadFcn callback for the
shortest_path_tests_reqs requirement set.

callbackScript = getPostLoadFcn(testReqs)

callbackScript =
'postLoadTestReqs'

Save and close the shortest_path_tests_reqs requirement set, then re-open the requirement
set. The PostLoadFcn callback executes.

save(testReqs);
slreq.clear;
testReqs = slreq.load("shortest_path_tests_reqs");

The postLoadTestReqs script opens the test file associated with the test requirements,
graph_unit_tests.m and imports the Requirements Editor view settings from
myViewSettings.mat.

type postLoadTestReqs.m

open("graph_unit_tests.m");
slreq.importViewSettings("myViewSettings.mat",1);

Version History
Introduced in R2022a

See Also
slreq.getCurrentObject | setPreSaveFcn | getPostLoadFcn | getPreSaveFcn

Topics
“Execute Code When Loading and Saving Requirement Sets”

3 Methods

3-252

setPreSaveFcn
Class: slreq.ReqSet
Package: slreq

Assign PreSaveFcn callback script

Syntax
setPreSaveFcn(rs,callbackScript)

Description
setPreSaveFcn(rs,callbackScript) assigns the script specified by callbackScript as the
PreSaveFcn callback script for the requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

callbackScript — Name of script to register
string scalar | character vector

Name of the script to register as the PreSaveFcn callback for the requirement set, specified as a
string scalar or character vector.

Examples

Get and Set PreSaveFcn Callback

This example shows how to get and set the PreSaveFcn callback for a requirement set.

Add the current folder to the path.

addpath(pwd)

Open a project that contains an algorithm to calculate the shortest path between two nodes on a
graph. For more information, see “Verify a MATLAB Algorithm by Using Requirements-Based Tests”.

slreqShortestPathProjectStart;

Open the shortest_path_tests_reqs requirement set. The requirement set contains test
requirements that describe the functional behavior that must be tested by a test case in order to
verify the shortest_path algorithm in the project.

testReqs = slreq.open("shortest_path_tests_reqs");

Register the preSaveTestReqs script as the PreSaveFcn callback.

 setPreSaveFcn

3-253

setPreSaveFcn(testReqs,"preSaveTestReqs");

Confirm that the preSaveTestReqs script is the PreSaveFcn callback for the
shortest_path_tests_reqs requirement set.

callbackScript = getPreSaveFcn(testReqs)

callbackScript =
'preSaveTestReqs'

Save the shortest_path_tests_reqs requirement set to execute the callback.

save(testReqs);

The preSaveTestReqs script saves the current Requirements Editor view settings to a MAT-file
called myViewSettings.mat.

type preSaveTestReqs.m

slreq.exportViewSettings("myViewSettings.mat");

Version History
Introduced in R2022a

See Also
slreq.getCurrentObject | setPostLoadFcn | getPostLoadFcn | getPreSaveFcn

Topics
“Execute Code When Loading and Saving Requirement Sets”

3 Methods

3-254

updateAttribute
Class: slreq.ReqSet
Package: slreq

Update information for requirement set custom attribute

Syntax
updateAttribute(rs,atrb,Name,Value)

Description
updateAttribute(rs,atrb,Name,Value) updates the custom attribute specified by atrb with
properties specified by the name-value pairs Name and Value in the requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

atrb — Custom attribute name
character array

Custom attribute name, specified as a character array.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Description','My new description.'

Description — Custom attribute description
character array

Custom attribute description, specified as the comma-separated pair consisting of 'Description'
and a character array.
Example: 'Description','My new description.'

List — Combobox list options
cell array

Combobox list options, specified as the comma-separated pair consisting of 'List' and a cell array.
The list of options is valid only if 'Unset' is the first entry. 'Unset' indicates that the user hasn't
chosen an option from the combo box. If the list does not start with 'Unset', it will be automatically
appended as the first entry.

 updateAttribute

3-255

Example: 'List',{'Unset','A','B','C'}

Note You can only use this name-value pair when the Type property of the custom attribute that
you're updating is Combobox.

Examples

Update Requirement Set Custom Attribute Information

This example shows how to update custom attribute information for a requirement set.

Load crs_req_func_spec, which describes a cruise control system. Find a requirement set in the
files and assign it to a variable.

slreq.load('crs_req_func_spec');
rs = slreq.find('Type','ReqSet');

Update an Edit Custom Attribute

Add an Edit custom attribute that has a description to the requirement set. Get the attribute
information with inspectAttribute.

addAttribute(rs,'MyEditAttribute','Edit','Description','Original attribute.')
inspectAttribute(rs,'MyEditAttribute')

ans = struct with fields:
 name: 'MyEditAttribute'
 type: Edit
 description: 'Original attribute.'

Update the custom attribute with a new description. Confirm the change by getting the attribute
information with inspectAttribute.

updateAttribute(rs,'MyEditAttribute','Description','Updated attribute.')
inspectAttribute(rs,'MyEditAttribute')

ans = struct with fields:
 name: 'MyEditAttribute'
 type: Edit
 description: 'Updated attribute.'

Update a Combobox Custom Attribute

Add a Combobox custom attribute that has a list of options to the requirement set. Get the attribute
information with inspectAttribute.

addAttribute(rs,'MyCombobox','Combobox','List',{'Unset','A','B','C'})
inspectAttribute(rs,'MyCombobox')

ans = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: ''

3 Methods

3-256

 list: {'Unset' 'A' 'B' 'C'}

Update the custom attribute with a new list of options. Confirm the change by getting the attribute
information with inspectAttribute.

updateAttribute(rs,'MyCombobox','List',{'Unset','1','2','3'})
inspectAttribute(rs,'MyCombobox')

ans = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: ''
 list: {'Unset' '1' '2' '3'}

Update the custom attribute with a new list of options and a new description. Confirm the change by
getting the attribute information with inspectAttribute.

updateAttribute(rs,'MyCombobox','List',{'Unset','A1','B2','B3'},'Description',...
 'Updated attribute with new options.')
inspectAttribute(rs,'MyCombobox')

ans = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: 'Updated attribute with new options.'
 list: {'Unset' 'A1' 'B2' 'B3'}

Cleanup

Clear the open requirement sets and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
slreq.ReqSet | addAttribute | deleteAttribute | inspectAttribute

Topics
“Manage Custom Attributes for Requirements by Using the Requirements Toolbox API”

 updateAttribute

3-257

updateImplementationStatus
Class: slreq.ReqSet
Package: slreq

Update requirement set implementation status summary

Syntax
updateImplementationStatus(rs)

Description
updateImplementationStatus(rs) updates the implementation status summary of the
requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Version History
Introduced in R2018b

See Also
getImplementationStatus

3 Methods

3-258

updateReferences
Class: slreq.ReqSet
Package: slreq

Update referenced requirements in requirement set

Syntax
[status,changeList] = updateReferences(rs,docID)
[status,changeList] = updateReferences(rs,topRef)

Description
[status,changeList] = updateReferences(rs,docID) updates the referenced requirements
in the requirement set rs by using the external requirements document specified by docID. The
function returns the update status and a list of changes made to the requirements.

[status,changeList] = updateReferences(rs,topRef) updates the referenced
requirements under the Import node topRef in the requirement set rs. The function updates the
referenced requirements by using the external document associated with the Import node.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

docID — External requirements document identifier
string scalar | character vector

Identifier of the external requirements document associated with the requirement set, specified as a
string scalar or a character vector.
Example: "requirement_spec.docx"

topRef — Import node
slreq.Reference object

Import node, specified as an slreq.Reference object.

Output Arguments
status — Update status
character vector

Requirement set update status, returned as a character vector.

changeList — List of updated referenced requirements
character vector

 updateReferences

3-259

List of updated referenced requirements, returned as a character vector. The list includes the
properties on page 2-65 of each referenced requirement changed by the function.

Examples

Update a Requirement Set from an External Requirements Document

This example shows how to update a requirement set from an external requirements document.

Open the CruiseRequirementsExample project. Load the crs_req requirement set.

slreqCCProjectStart;
rs = slreq.load("crs_req");

Update the requirement set from the external requirements document crs_req.docx.

[status,changeList] = updateReferences(rs,"crs_req.docx")

status =
'Update completed. Refer to Comments on Import1.'

changeList =
 'Updated: CC003_01. Properties: description
 Updated: CC003_02. Properties: description
 Updated: CC003_03. Properties: description
 Updated: CC003_04. Properties: description
 Updated: Cruise control buttons. Properties: description
 Updated: Cruise control mode indicator. Properties: description
 Updated: Cruise control modes. Properties: description
 Updated: Dashboard image. Properties: description
 Updated: Deactivating cruise control. Properties: description
 Updated: Disabling cruise control. Properties: description
 Updated: Enabling cruise control. Properties: description
 Updated: Other inputs. Properties: description
 Updated: ROM. Properties: description
 Updated: Resuming cruise control. Properties: description
 Updated: System Inputs. Properties: description
 Updated: System outputs. Properties: description
 Updated: Throttle value calculation. Properties: description
 '

Update Referenced Requirements in a Requirement Set from an Import Node

This example shows how to update referenced requirements in a requirement set from an Import
node.

Open the CruiseRequirementsExample project and load the crs_req requirement set.

slreqCCProjectStart;
rs = slreq.load("crs_req");

Find the Import node in the requirement set. The Import node has an Index property set to
Import1.

3 Methods

3-260

topRef = find(rs,"Index","Import1");

Update the requirement set from the external requirements document associated with the Import
node.

[status,changeList] = updateReferences(rs,topRef)

status =
'Update completed. Refer to Comments on Import1.'

changeList =
 'Updated: CC003_01. Properties: description
 Updated: CC003_02. Properties: description
 Updated: CC003_03. Properties: description
 Updated: CC003_04. Properties: description
 Updated: Cruise control buttons. Properties: description
 Updated: Cruise control mode indicator. Properties: description
 Updated: Cruise control modes. Properties: description
 Updated: Dashboard image. Properties: description
 Updated: Deactivating cruise control. Properties: description
 Updated: Disabling cruise control. Properties: description
 Updated: Enabling cruise control. Properties: description
 Updated: Other inputs. Properties: description
 Updated: ROM. Properties: description
 Updated: Resuming cruise control. Properties: description
 Updated: System Inputs. Properties: description
 Updated: System outputs. Properties: description
 Updated: Throttle value calculation. Properties: description
 '

Tips
• You can use updateFromDocument to update the referenced requirements under an Import node

without specifying the requirement set.

Version History
Introduced in R2017b

See Also
slreq.ReqSet | updateFromDocument | hasNewUpdate

 updateReferences

3-261

updateSrcArtifactUri
Class: slreq.ReqSet
Package: slreq

Update document resource identifier of imported requirements

Syntax
updateSrcArtifactUri(rs,oldURI,newURI)

Description
updateSrcArtifactUri(rs,oldURI,newURI) updates the Artifact property from oldURI to
newURI for the referenced requirements in the requirement set rs that have Artifact set to oldURI.
Use this function to update the external requirements document associated with the imported
requirements from non-file-based domains, such as a query URL.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

oldURI — Resource identifier for original external document
string scalar | character vector

Resource identifier for the original external document, specified as a string scalar or character
vector.

newURI — Resource identifier for new external document
string scalar | character vector

Resource identifier for the new external document, specified as a string scalar or character vector.

Examples

Update Source Artifact Resource Identifier

This example shows how to update the stored query for requirements that were previously imported
to a requirement set called myReqSet.

Get a handle to the requirement set called myReqSet.

rs = slreq.find(Type="ReqSet",Name="myReqSet");

Get a handle to the import node for the requirement set.

topRef = children(rs);

3 Methods

3-262

Update the query stored in the Artifact property of the referenced requirements in the requirement
set.

oldURI = topRef.Artifact;
newURI = "rm:ofType=%3A9443%2Frm2%2Ftypes%2F_C1KXMwJgEeuFW5Ss3RBk7w%3E";
updateSrcArtifactUri(rs,oldURI,newURI);

Tips
• If you rename or move an external requirements document file, use updateSrcFileLocation to

update the file name or path of the referenced requirements in the requirement set.
• If you rename or move an external requirements document, you can update the link destinations

for direct links by using updateDocUri.

Version History
Introduced in R2022a

See Also
slreq.ReqSet | updateDocUri | updateSrcFileLocation

 updateSrcArtifactUri

3-263

updateSrcFileLocation
Class: slreq.ReqSet
Package: slreq

Update document location of imported requirements

Syntax
updateSrcFileLocation(rs,oldID,newID)

Description
updateSrcFileLocation(rs,oldID,newID) updates the Artifact property from oldID to newID
for the referenced requirements in the requirement set rs that have Artifact set to oldID. Use this
function to update the external requirements document associated with imported requirements.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

oldID — Resource identifier for original external document
string scalar | character vector

Resource identifier for the original external document, specified as a string scalar or character
vector.

newID — Resource identifier for new external document
string scalar | character vector

Resource identifier for the new external document, specified as a string scalar or character vector.

Examples

Update Source File Location for Referenced Requirements in an Imported Requirement Set

This example shows how to update the source file location for referenced requirements in an
imported requirement set.

Open the CruiseRequirementsExample project and load the crs_req requirement set.

slreqCCProjectStart;
rs = slreq.load("crs_req");

Copy the crs_req.docx document and name it crs_req_v2.docx. Save the new file in the same
folder.

3 Methods

3-264

oldPath = fullfile(pwd,"documents","crs_req.docx");
newPath = fullfile(pwd,"documents","crs_req_v2.docx");
copyfile(oldPath,newPath);

Update the referenced requirements in the requirement set crs_req that point to crs_req.docx as
the source file to point to crs_req_v2.docx.

updateSrcFileLocation(rs,"crs_req.docx","crs_req_v2.docx")

To confirm that the source file updated, get a handle to the Import node for the requirement set and
check the Artifact property.

topRef = children(rs);
srcFile = topRef.Artifact

srcFile =
'crs_req_v2.docx'

Tips
• If you rename or move an external requirements document, you can update the link destinations

for direct links by using updateDocUri.
• To update the external requirements document resource identifier for referenced requirements

imported from non-file-based domains, use updateSrcArtifactUri.

Version History
Introduced in R2017b

See Also
slreq.ReqSet | updateDocUri

Topics
“Use Command-Line API to Update or Repair Requirements Links”

 updateSrcFileLocation

3-265

updateVerificationStatus
Class: slreq.ReqSet
Package: slreq

Update requirement set verification status summary

Syntax
updateVerificationStatus(rs)

Description
updateVerificationStatus(rs) updates the verification status summary of the requirement set
rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Version History
Introduced in R2018b

See Also
getVerificationStatus

3 Methods

3-266

add
Class: slreq.Requirement
Package: slreq

Add child requirement

Syntax
reqChild = add(req)
reqChild = add(req,PropertyName,
PropertyValue,...,PropertyNameN,PropertyValueN)

Description
reqChild = add(req) adds a child requirement to the requirement req and returns a handle to
the child requirement.

reqChild = add(req,PropertyName,
PropertyValue,...,PropertyNameN,PropertyValueN) adds a child requirement with the
properties and property values specified by PropertyName and PropertyValue.

Input Arguments
req — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

PropertyName — Requirement property name
string scalar | character vector

Requirement property name, specified as a string scalar or a character vector.

You can only enter an slreq.Requirement property on page 2-76 where the SetAccess attribute is
public.
Example: "Summary"

PropertyValue — Requirement property value
string scalar | character vector

Requirement property value, specified as an string scalar or a character vector.

Output Arguments
reqChild — Child requirement
slreq.Requirement object

New child requirement, returned as an slreq.Requirement object.

 add

3-267

Examples

Add a Child Requirement Under a Requirement

This example shows how to add a child requirement under a requirement.

Load the requirement set myReqSet, which does not contain any requirements.

rs = slreq.load("myReqSet");

Use the add method to add a top-level requirement to the requirement set.

req = add(rs);

Use the add method to add a child requirement under the requirement.

newReq = add(req)

newReq =
 Requirement with properties:

 Type: 'Functional'
 Id: '#3'
 Summary: ''
 Description: ''
 Keywords: {}
 Rationale: ''
 CreatedOn: 01-Sep-2022 13:59:19
 CreatedBy: 'batserve'
 ModifiedBy: 'batserve'
 IndexEnabled: 1
 IndexNumber: []
 SID: 3
 FileRevision: 1
 ModifiedOn: 01-Sep-2022 13:59:19
 Dirty: 1
 Comments: [0x0 struct]
 Index: '1.1'

Get the value of the Index property for the new requirement.

idx = newReq.Index

idx =
'1.1'

The value indicates that the new requirement is a child requirement of the original requirement.

Cleanup

Discard the requirement set without saving.

3 Methods

3-268

discard(rs);

Tips
• To add a top-level requirement to a requirement set, use slreq.ReqSet.add. To add a

referenced requirement as a child of another referenced requirement, use
slreq.Reference.add. To add a justification as a child of another justification, use
slreq.Justification.add.

Version History
Introduced in R2018a

See Also
slreq.Requirement | slreq.ReqSet.add | slreq.Reference.add |
slreq.Justification.add | remove

 add

3-269

addComment
Class: slreq.Requirement
Package: slreq

Add comments to requirements

Syntax
newComment = addComment(req,myComment)

Description
newComment = addComment(req,myComment) adds a comment, myComment, to the requirement
req.

Input Arguments
req — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

myComment — Comment text
string scalar | character vector

Comment text to add to the requirement, specified as a string scalar or character vector.

Output Arguments
newComment — Comment
struct

Comment added, returned as a structure containing these fields:

CommentedBy — Name of individual or organization who added comment
character vector

Name of the individual or organization who added the comment, returned as a character vector.

CommentedOn — Date that comment was added
datetime

Date that the comment was added, returned as a datetime object.

CommentedRevision — Comment revision number
int32 object

Comment revision number, returned as an int32 object.

3 Methods

3-270

Text — Comment text
character vector

Comment text, returned as a character vector.

Examples

Add Comments to Requirements

This example shows how to add comments to requirements.

Load the requirement set basicReqSet.

rs = slreq.load("basicReqSet");

Find the first requirement in the set.

req = find(rs,Index=1);

Add a comment to the requirement.

newComment = addComment(req,"My new comment.");

Tips
• To add a comment to a referenced requirement, use slreq.Reference.addComment. To add a

comment to a justification, use slreq.Justification.addComment.

Alternative Functionality
App

You can also add a comment by using the Requirements Editor. Select a requirement and, in the
right pane, under Comments, click Add Comment.

Version History
Introduced in R2017b

See Also
slreq.Requirement | getAttribute

 addComment

3-271

children
Class: slreq.Requirement
Package: slreq

Find child requirements of a requirement

Syntax
childReqs = children(req)

Description
childReqs = children(req) returns the child requirements childReqs of the
slreq.Requirement object req.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

Output Arguments
childReqs — Child requirements
slreq.Requirement object | slreq.Requirement object array

The child requirements belonging to the requirement req, returned as slreq.Requirement objects.

Examples
Find Child Requirements

% Load a requirement set file and add three new requirements

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = add(rs, 'Id', '5', 'Summary' , 'Additional Requirement');
req2 = add(req1, 'Id', '5.1', 'Summary', 'Additional Child Requirement 1');
req3 = add(req1, 'Id', '5.2', 'Summary', 'Additional Child Requirement 2');

% Find the children of req1
childReqs = children(req1);

childReqs =

 1×2 Requirement array with properties:

 Id
 Summary
 Keywords

3 Methods

3-272

 Description
 Rationale
 SID
 CreatedBy
 CreatedOn
 ModifiedBy
 ModifiedOn
 FileRevision
 Comments

Tips
• To get the top-level items in a requirement set, use slreq.ReqSet.children. To get the child

referenced requirements of a referenced requirement, use slreq.Reference.children. To get
the child justifications of a justification, use slreq.Justification.children.

Version History
Introduced in R2018a

See Also
slreq.Requirement | slreq.ReqSet | slreq.ReqSet.children |
slreq.Reference.children | slreq.Justification.children | parent

 children

3-273

copy
Class: slreq.Requirement
Package: slreq

Copy and paste requirement

Syntax
tf = copy(req1,location,req2)

Description
tf = copy(req1,location,req2) copies requirement req1 and pastes it under, before, or after
requirement req2 depending on the location specified by location. The function returns 1 if the
copy and paste is executed.

Note If you copy a requirement and paste it within the same requirement set, the copied
requirement retains the same custom attribute values as the original. If the requirement is pasted
into a different requirement set, the copied requirement does not retain the custom attribute values.

Input Arguments
req1 — Requirement to copy
slreq.Requirement object

Requirement to copy, specified as an slreq.Requirement object.

location — Requirement paste location
'under' | 'before' | 'after'

Paste location, specified as 'under', 'before', or 'after'.

req2 — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 1 or 0 of data type logical.

Examples

3 Methods

3-274

Copy and Paste a Requirement

This example shows how to copy a requirement and paste it under, before, or after another
requirement.

Load the crs_req_func_spec requirement file, which describes a cruise control system, and assign
it to a variable. Find two requirements by index. The first requirement will be copied and pasted in
relation to the second requirement.

rs = slreq.load('crs_req_func_spec');
req1 = find(rs,'Type','Requirement','Index','1');
req2 = find(rs,'Type','Requirement','Index','2');

Paste Under a Requirement

Copy and paste the first requirement, req1, under the second requirement, req2. The first
requirement becomes the last child requirement of req2, which you can verify by finding children of
req2 and comparing the summary of the last child and req1.

tf = copy(req1,'under',req2);
childReqs = children(req2);
lastChild = childReqs(numel(childReqs));
lastChild.Summary

ans =
'Driver Switch Request Handling'

req1.Summary

ans =
'Driver Switch Request Handling'

Paste Before a Requirement

Copy and paste the first requirement, req1, before the second requirement, req2. Confirm that the
requirement was pasted before req2 by checking the index and Summary. The old index of req2 was
2. The index of the pasted requirement should be 2 and the index of req2 should be 3.

tf = copy(req1,'before',req2);
pastedReq = find(rs,'Type','Requirement','Index','2');
pastedReq.Summary

ans =
'Driver Switch Request Handling'

req2.Index

ans =
'3'

Paste After a Requirement

Copy and paste the first requirement, req1, after the second requirement, req2. Confirm that the
requirement was pasted after req2 by checking the index. The index of req2 is 3 and should not
change, which means the index of the pasted requirement should be 4.

tf = copy(req1,'after',req2);
pastedReq2 = find(rs,'Type','Requirement','Index','4');
pastedReq2.Summary

 copy

3-275

ans =
'Driver Switch Request Handling'

req2.Index

ans =
'3'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
slreq.Requirement | move | moveDown | moveUp

3 Methods

3-276

demote
Class: slreq.Requirement
Package: slreq

Demote requirements

Syntax
deomote(req)

Description
deomote(req) demotes the slreq.Requirement object req one level down in the hierarchy.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

Examples
Demote Requirements

% Load a requirement set file and add two new requirements
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = add(rs, 'Id', '5', 'Summary' , 'Additional Requirement');
req2 = add(req1, 'Id', '5.1', 'Summary' , 'Child Requirement');

% Demote req2
demote(req2);

% Find the parent of req2
parentReq = parent(req2);

parentReq =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

Version History
Introduced in R2018a

 demote

3-277

See Also
slreq.Requirement | slreq.ReqSet | promote

3 Methods

3-278

find
Class: slreq.Requirement
Package: slreq

Find children of parent requirements

Syntax
childReqs = find(req,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN)

Description
childReqs = find(req,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN) finds and returns child requirements childReqs of the parent requirement req
that match the properties specified by PropertyName and PropertyValue.

Input Arguments
req — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

PropertyName — Requirement property
character vector

Requirement property name, specified as a character vector. See the valid property names in the
properties section of slreq.Requirement.
Example: 'Type','Keywords','SID'

PropertyValue — Requirement property value
character vector | character array | datetime value | scalar | logical | structure array

Requirement property value, specified as a character vector, character array, datetime value, scalar,
logical, or structure array. The data type depends on the specified propertyName. See the valid
property values in the properties section of slreq.Requirement.

Output Arguments
childReqs — Child requirements
slreq.Requirement object | slreq.Requirement object array

Child requirements, returned as slreq.Requirement objects.

Examples

 find

3-279

Find Child Requirements

This example shows how to find child requirements that match property values.

Load the crs_req_func_spec requirement file, which describes a cruise control system, and assign
it to a variable. Find the requirement with index 4, as this requirement has child requirements.

rs = slreq.load('crs_req_func_spec');
parentReq = find(rs,'Type','Requirement','Index','4');

Find all the child requirements of parentReq that were modified in revision 1.

childReqs1 = find(parentReq,'FileRevision',1)

childReqs1=1×10 object
 1x10 Requirement array with properties:

 Type
 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 IndexEnabled
 IndexNumber
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

Find all the child requirements of parentReq that were modified in revision 1 and are Functional
type requirements.

childReqs2 = find(parentReq,'FileRevision',1,'Type','Functional')

childReqs2=1×10 object
 1x10 Requirement array with properties:

 Type
 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 IndexEnabled
 IndexNumber
 SID
 FileRevision
 ModifiedOn

3 Methods

3-280

 Dirty
 Comments
 Index

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2018a

See Also
slreq.Requirement | slreq.ReqSet | slreq.find

 find

3-281

getAttribute
Class: slreq.Requirement
Package: slreq

Get requirement property values

Syntax
val = getAttribute(req,propertyName)

Description
val = getAttribute(req,propertyName) returns the value of the requirement property,
propertyName, for the requirement, req. The property can be a built-in property, a custom
attribute, or a stereotype property.

Note To return the value of a stereotype property, you must pass the fully qualified name of the
property. For example, the fully qualified name for a property called Status in a stereotype called
myStereotype in a profile called myProfile is myProfile.myStereotype.Status.

Input Arguments
req — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

propertyName — Requirement property name
string scalar | character vector

Requirement property name, specified as a string scalar or character vector.
Example: "Description"

Output Arguments
val — Requirement property value
string scalar | character array | boolean | ...

Requirement property value, returned as a:

• String scalar
• Character array
• boolean
• datetime
• single

3 Methods

3-282

• double
• int8
• int16
• int32
• int64
• uint8
• uint16
• uint32
• uint64
• enumeration

The data type depends on the type of the built-in property, custom attribute, or stereotype property.

Examples

Import Profile and Get and Set Stereotype Properties

This example shows how to assign a profile to a requirement set and get and set stereotype property
values for requirements.

Save the location of the current folder as a variable.

initFolder = pwd;

Open the ShortestPath project.

slreqShortestPathProjectStart;

Load the shortest_path_tests_reqs requirement set.

rs = slreq.load("shortest_path_tests_reqs");

Assign the TestReqProfile profile to the shortest_path_tests_reqs requirement set.

importProfile(rs,strcat(initFolder,"\TestReqProfile"));

Find the requirement with index 2.1.1. Apply the TestRequirement stereotype to the requirement.

testReq = find(rs,Index="2.1.1");
testReq.Type = "TestReqProfile.TestRequirement";

Get the value of the Reviewed stereotype property.

val = getAttribute(testReq,"TestReqProfile.TestRequirement.Reviewed")

val = 0

Set the value of the Reviewed stereotype property to 1.

setAttribute(testReq,"TestReqProfile.TestRequirement.Reviewed",1)

 getAttribute

3-283

Tips
• To get property values for links, use slreq.Link.getAttribute.

Version History
Introduced in R2018a

See Also
slreq.Requirement | slreq.ReqSet | setAttribute

Topics
“Customize Requirements and Links by Using Stereotypes”
“Manage Custom Attributes for Requirements by Using the Requirements Toolbox API”

3 Methods

3-284

getImplementationStatus
Class: slreq.Requirement
Package: slreq

Query requirement implementation status summary

Syntax
status = getImplementationStatus(req)
status = getImplementationStatus(req, 'self')

Description
status = getImplementationStatus(req) returns the implementation status summary for the
requirement req and all its child requirements.

status = getImplementationStatus(req, 'self') returns the implementation status
summary for just the requirement req.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement instance, specified as an slreq.Requirement object.

Output Arguments
status — Requirement implementation status summary
structure

The implementation status summary for the requirement and its child requirements, returned as a
MATLAB structure containing these fields.

total — Total number of requirements
double

The total number of Functional requirements (including child requirements), returned as a double.

implemented — Implemented requirements
double

The total number of implemented requirements (including child requirements), returned as a
double.

justified — Justified requirements
double

The total number of requirements (including child requirements), justified for implementation,
returned as a double.

 getImplementationStatus

3-285

none — Unimplemented requirements
double

The total number of unimplemented requirements (including child requirements), returned as a
double.

Examples
Get Implementation Status Summary of a Requirement

% Get the implementation status summary of the requirement req
% and all its child requirements
reqImplStatus = getImplementationStatus(req)

reqImplStatus =

 struct with fields:

 total: 20
 implemented: 16
 justified: 3
 none: 1

% Get the implementation status summary of only the requirement myReq
myReqImplStatus = getImplementationStatus(myReq, 'self')

myReqImplStatus =

 struct with fields:

 implemented: 16
 justified: 3
 none: 1

Version History
Introduced in R2018b

See Also
updateImplementationStatus

3 Methods

3-286

getVerificationStatus
Class: slreq.Requirement
Package: slreq

Query requirement verification status summary

Syntax
status = getVerificationStatus(req)
status = getVerificationStatus(req, 'self')

Description
status = getVerificationStatus(req) returns the verification status summary for the
requirement req and all its child requirements.

status = getVerificationStatus(req, 'self') returns the verification status summary for
just the requirement req.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement instance, specified as an slreq.Requirement object.

Output Arguments
status — Requirement verification status summary
structure

The verification status for the requirement and its child requirements, returned as a MATLAB
structure containing these fields.

total — Total number of requirements
double

The total number of requirements (including child requirements) with Verify links, returned as a
double.

passed — Passed requirements
double

The total number of requirements (including child requirements) that passed the tests associated
with them, returned as a double.

failed — Failed requirements
double

 getVerificationStatus

3-287

The total number of requirements (including child requirements) that failed the tests associated with
them, returned as a double.

unexecuted — Unexecuted requirements
double

The total number of requirements (including child requirements) with unexecuted associated tests,
returned as a double.

justified — Justified requirements
double

The total number of requirements (including child requirements) that are justified for verification in
the requirement set, returned as a double.

none — Unlinked requirements
double

The total number of requirements (including child requirements) without links to verification objects,
returned as a double.

Examples
Get Verification Status Summary of a Requirement

% Get the verification status summary of the requirement req
% and all its child requirements
reqVerifStatus = getVerificationStatus(req)

reqVerifStatus =

 struct with fields:

 total: 34
 passed: 14
 failed: 15
 unexecuted: 4
 justified: 1
 none: 0

% Get the verification status summary of only the requirement myReq
myReqVerifStatus = getVerificationStatus(myReq, 'self')

myReqVerifStatus =

 struct with fields:

 passed: 0
 failed: 1
 unexecuted: 0
 justified: 0
 none: 0

3 Methods

3-288

Version History
Introduced in R2018b

See Also
updateVerificationStatus

 getVerificationStatus

3-289

inLinks
Class: slreq.Requirement
Package: slreq

Get incoming links for requirements

Syntax
myLinks = inLinks(req)

Description
myLinks = inLinks(req) returns the incoming links for the requirement req.

Input Arguments
req — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

Output Arguments
myLinks — Incoming links
slreq.Link array

Incoming links for the requirement, returned as an slreq.Link array.

Examples

Get Incoming and Outgoing Links for Requirements

This example shows how to get incoming and outgoing links for requirements.

Load the requirement set basicReqSet.

rs = slreq.load("basicReqSet");

Find the first requirement in the requirement set.

req1 = find(rs,Index=1);

Get the incoming links for the requirement.

myInLinks = inLinks(req1);

Find the second requirement in the requirement set.

req2 = find(rs,Index=2);

3 Methods

3-290

Get the outgoing links for the requirement.

myOutLinks = outLinks(req2);

Tips
• To get the incoming links for a referenced requirement, use slreq.Reference.inLinks.

Alternative Functionality
App

You can also use the Requirements Editor to view incoming links. Select a requirement. In the right
pane, under Links, the incoming links icon indicates incoming links.

Version History
Introduced in R2017b

See Also
slreq.Requirement | slreq.Link | outLinks

 inLinks

3-291

isFilteredIn
Class: slreq.Requirement
Package: slreq

Check filtered requirements

Syntax
tf = isFilteredIn(req)

Description
tf = isFilteredIn(req) checks if the requirement, req, is filtered in the Requirements Editor
or Requirements Perspective and returns 1 if the requirement is not filtered and 0 if the requirements
is filtered.

Input Arguments
req — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

Examples

Check for Filtered Requirements

This example shows how to check if a requirement is filtered.

Load the myAddRequirements requirement set.

rs = slreq.open("myAddRequirements");

Find the requirement with Summary set to Input u.

req = find(rs,Summary="Input u");

Check if the requirement is filtered.

tf = isFilteredIn(req)

tf = logical
 1

Create a filter called ContainerReqs. Use the ReqFilter property to define a filter that displays
only requirements with Type set to Container.

myView = slreq.View.create("ContainerReqs");
myView.ReqFilter = "{'ReqType','Container'};"

3 Methods

3-292

myView =
 View with properties:

 Name: 'ContainerReqs'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

Apply the filter, then check if the requirement is filtered.

activate(myView)
tf = isFilteredIn(req)

tf = logical
 0

Clear the loaded requirement sets and close the Requirements Editor.

slreq.clear;

Tips
• To check if a referenced requirement is filtered, use slreq.Reference.isFilteredIn. To

check if a justification is filtered, use slreq.Justification.isFilteredIn. To check if a link
is filtered, use slreq.Link.isFilteredIn.

Version History
Introduced in R2022b

See Also
Apps
Requirements Editor

Classes
slreq.Requirement

Objects
slreq.View

Topics
“Filter Requirements and Links in the Requirements Editor”

 isFilteredIn

3-293

isJustifiedFor
Class: slreq.Requirement
Package: slreq

Check if requirement is justified

Syntax
tf = isJustifiedFor(req, linkType)

Description
tf = isJustifiedFor(req, linkType) checks if the requirement req is justified for the link
type specified by linkType.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement to check for justification, specified as an slreq.Requirement object.

linkType — Justification link type
'Implement' | 'Verify'

Justification link type, specified as a character vector.

Output Arguments
tf — Justification status
0 | 1

The justification status of the requirement, returned as a Boolean.

Examples
Check if Requirements Are Justified

% Check if requirement req1 is justified for Implementation
req1_Status = isJustifiedFor(req1, 'Implement')

req1_Status =

 logical

 1

% Check if requirement req2 is justified for Verification
req2_Status = isJustifiedFor(req2, 'Verify')

3 Methods

3-294

req2_Status =

 logical

 0

Version History
Introduced in R2018b

See Also
getImplementationStatus | getVerificationStatus

 isJustifiedFor

3-295

justifyImplementation
Class: slreq.Requirement
Package: slreq

Justify requirements for implementation

Syntax
implementationJustLink = justifyImplementation(req, jt)

Description
implementationJustLink = justifyImplementation(req, jt) justifies the requirement req
for implementation by creating a link implementationJustLink from the justification jt to req.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement to justify for implementation, specified as an slreq.Requirement object.

jt — Justification object
slreq.Justification object

Justification object to justify req for implementation, specified as an slreq.Justification object.

Output Arguments
implementationJustLink — Justification link
slreq.Link object

Link to justification object jt of type Implement, returned as an slreq.Link object.

Examples
% Justify requirement myReq for implementation by using a justification object myJust

myImplJustification = justifyImplementation(myReq, myJust)

myImplJustification =

 Link with properties:

 Type: 'Implement'
 Description: 'Cruise Control Mode (crs_req_func_spec#1)'
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 13-Jan-2017 13:45:12
 CreatedBy: 'John Doe'

3 Methods

3-296

 ModifiedOn: 24-Oct-2018 12:25:30
 ModifiedBy: 'Jane Doe'
 Revision: 6
 Comments: [0×0 struct]

Version History
Introduced in R2018b

See Also
getImplementationStatus | addJustification

 justifyImplementation

3-297

justifyVerification
Class: slreq.Requirement
Package: slreq

Justify requirements for verification

Syntax
verificationJustLink = justifyVerification(req, jt)

Description
verificationJustLink = justifyVerification(req, jt) justifies the requirement req for
verification by creating a link verificationJustLink from the justification jt to req.

Input Arguments
req — Requirement object
slreq.Requirement object

Requirement to justify for verification, specified as an slreq.Requirement object.

jt — Justification object
slreq.Justification object

Justification object to justify req for verification, specified as an slreq.Justification object.

Output Arguments
verificationJustLink — Justification link
slreq.Link object

Link to justification object jt of type Verify, returned as an slreq.Link object.

Examples
% Justify requirement myReq for verification by using a justification object myJust

myVerifJustification = justifyVerification(myReq, myJust)

myVerifJustification =

 Link with properties:

 Type: 'Verify'
 Description: 'Cruise mode detection (crs_req_func_spec#67)'
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 30-Oct-2017 09:10:34
 CreatedBy: 'John Doe'

3 Methods

3-298

 ModifiedOn: 02-Feb-2018 17:08:09
 ModifiedBy: 'Jane Doe'
 Revision: 5
 Comments: [0×0 struct]

Version History
Introduced in R2018b

See Also
addJustification | getVerificationStatus

 justifyVerification

3-299

move
Class: slreq.Requirement
Package: slreq

Move requirement in hierarchy

Syntax
tf = move(req1,location,req2)

Description
tf = move(req1,location,req2) moves requirement req1 under, before, or after requirement
req2 depending on the location specified by location. The function returns 1 if the move is
executed without error.

Input Arguments
req1 — Requirement
slreq.Requirement object

Requirement to move, specified as an slreq.Requirement object.

location — Requirement move location
'under' | 'before' | 'after'

Requirement move location, specified as 'under', 'before', or 'after'.

req2 — Requirement to move
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 1 or 0 of data type logical.

Examples

Move a Requirement

This example shows how to move a requirement under, before, or after another requirement.

3 Methods

3-300

Load the crs_req_func_spec requirement file, which describes a cruise control system, and assign
it to a variable. Find two requirements by index. The first requirement will be moved in relation to the
second requirement.

rs = slreq.load('crs_req_func_spec');
req1 = find(rs,'Type','Requirement','Index','1');
req2 = find(rs,'Type','Requirement','Index','2');

Move Under a Requirement

Move the first requirement, req1, under the second requirement, req2. The first requirement
becomes the last child requirement of requirement req2, and req2 moves up one in the hierarchy,
which you can verify by checking the index of req1 and req2. The old indices of req1 and req2
were 1 and 2, respectively.

tf = move(req1,'under',req2);
req1.Index

ans =
'1.3'

req2.Index

ans =
'1'

Move Before a Requirement

Move the first requirement, req1, before the second requirement, req2. Confirm that the
requirement was moved correctly by checking the indices of req1 and req2. The indices of req1 and
req2 are now the same as they were originally: 1 and 2, respectively.

tf = move(req1,'before',req2);
req1.Index

ans =
'1'

req2.Index

ans =
'2'

Move After a Requirement

Move the first requirement,req1, after the second requirement, req2. When you move requirement
req1 down in the hierarchy, requirement req2 also moves up, which you can verify by checking the
indices of req1 and req2.

tf = move(req1,'after',req2);
req1.Index

ans =
'2'

req2.Index

ans =
'1'

 move

3-301

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
slreq.Requirement | copy | moveDown | moveUp

3 Methods

3-302

moveDown
Class: slreq.Requirement
Package: slreq

Move requirement down in hierarchy

Syntax
tf = moveDown(req)

Description
tf = moveDown(req) moves the requirement req down one spot in the hierarchy, and returns 1 if
the move is executed without error. The requirement req cannot be moved to a new level in the
hierarchy.

Input Arguments
req — Requirement
slreq.Requirement

Requirement, specified as an slreq.Requirement object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 1 or 0 of data type logical.

Examples

Move a Requirement Down

This example shows how to move a requirement down in the hierarchy.

Load the crs_req_func_spec requirement file, which describes a cruise control system, and assign
it to a variable. Find the requirement with index 3.1.

rs = slreq.load('crs_req_func_spec');
req1 = find(rs,'Type','Requirement','Index','3.1');

Move the requirement down one spot in the hierarchy. Confirm the move by checking the success
status, tf1, and the index.

tf1 = moveDown(req1)

 moveDown

3-303

tf1 = logical
 1

req1.Index

ans =
'3.2'

Find the requirement with index 3.4. This requirement is already at the bottom of its level in the
hierarchy and cannot be moved down further, which you can verify by trying to move it down.
Confirm that the move failed by checking the success status, tf2, and the index.

req2 = find(rs,'Type','Requirement','Index','3.4');
tf2 = moveDown(req2)

tf2 = logical
 0

req2.Index

ans =
'3.4'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
slreq.Requirement | copy | move | moveUp

3 Methods

3-304

moveUp
Class: slreq.Requirement
Package: slreq

Move requirement up in hierarchy

Syntax
tf = moveUp(req)

Description
tf = moveUp(req) moves the requirement req up one spot in the hierarchy, and returns 1 if the
move is executed without error. The requirement req cannot be moved to a new level in the
hierarchy.

Input Arguments
req — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

Output Arguments
tf — Move success status
0 | 1

Move success status, returned as a 1 or 0 of data type logical.

Examples

Move a Requirement Up

This example shows how to move a requirement up in the hierarchy.

Load the crs_req_func_spec requirement file, which describes a cruise control system, and assign
it to a variable. Find the requirement with index 3.4.

rs = slreq.load('crs_req_func_spec');
req1 = find(rs,'Type','Requirement','Index','3.4');

Move the requirement up one spot in the hierarchy. Confirm the move by checking the success status,
tf1, and the index.

tf1 = moveUp(req1)

 moveUp

3-305

tf1 = logical
 1

req1.Index

ans =
'3.3'

Find the requirement with index 3.1. This requirement is already at the top of its level in the
hierarchy and cannot be moved up further, which you can verify by trying to move it up. Confirm that
the move failed by checking the success status, tf2, and the index.

req2 = find(rs,'Type','Requirement','Index','3.1');
tf2 = moveUp(req2)

tf2 = logical
 0

req2.Index

ans =
'3.1'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2020b

See Also
slreq.Requirement | copy | move | moveDown

3 Methods

3-306

outLinks
Class: slreq.Requirement
Package: slreq

Get outgoing links for requirements

Syntax
myLinks = outLinks(req)

Description
myLinks = outLinks(req) returns the outgoing links for the requirement req.

Input Arguments
req — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

Output Arguments
myLinks — Outgoing links
slreq.Link array

Outgoing links for the requirement, returned as an slreq.Link array.

Examples

Get Incoming and Outgoing Links for Requirements

This example shows how to get incoming and outgoing links for requirements.

Load the requirement set basicReqSet.

rs = slreq.load("basicReqSet");

Find the first requirement in the requirement set.

req1 = find(rs,Index=1);

Get the incoming links for the requirement.

myInLinks = inLinks(req1);

Find the second requirement in the requirement set.

req2 = find(rs,Index=2);

 outLinks

3-307

Get the outgoing links for the requirement.

myOutLinks = outLinks(req2);

Tips
• To get the outgoing links for a referenced requirement, use slreq.Reference.outLinks. To get

the outgoing links for a justification, use slreq.Justification.outLinks.

Alternative Functionality
App

You can also use the Requirements Editor to view outgoing links. Select a requirement. In the right
pane, under Links, the outgoing links icon indicates outgoing links.

Version History
Introduced in R2017b

See Also
slreq.Requirement | slreq.Link | inLinks

3 Methods

3-308

parent
Class: slreq.Requirement
Package: slreq

Find parent item of requirement

Syntax
parentObj = parent(req)

Description
parentObj = parent(req) returns the parent object parentObj of the slreq.Requirement
object req.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

Output Arguments
parentObj — Parent object
slreq.Requirement object | slreq.ReqSet object

The parent of the requirement req, returned as an slreq.Requirement object or as an
slreq.ReqSet object.

Examples
Find Parent Objects of Requirements

% Load a requirement set file and add two new requirements

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = add(rs, 'Id', '5', 'Summary' , 'Additional Requirement');
req2 = add(req1, 'Id', '5.1', 'Summary' , 'Additional Child Requirement');

% Find the parent of req2
parentReq1 = parent(req2)

parentReq1 =

 Requirement with properties:

 Id: '5'
 Summary: 'Additional Requirement'
 Keywords: [0×0 char]

 parent

3-309

 Description: ''
 Rationale: ''
 SID: 10
 CreatedBy: 'John Doe'
 CreatedOn: 05-Oct-2007 16:09:38
 ModifiedBy: 'Jane Doe'
 ModifiedOn: 21-Dec-2016 11:10:05
 Comments: [0×0 struct]

% Find the parent of req1
parentReq2 = parent(req1)

parentReq2 =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

Version History
Introduced in R2018a

See Also
slreq.Requirement | slreq.ReqSet | children

3 Methods

3-310

promote
Class: slreq.Requirement
Package: slreq

Promote requirements

Syntax
promote(req)

Description
promote(req) promotes the slreq.Requirement object req one level up in the hierarchy.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

Examples
Find Requirements with Matching Attribute Values

% Load a requirement set file and add two new requirements
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = add(rs, 'Id', '5', 'Summary' , 'Additional Requirement');
req2 = add(req1, 'Id', '5.1', 'Summary' , 'Child Requirement');

% Promote req2
promote(req2);

% Find the parent of req2
parentReq = parent(req2);

parentReq =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

Version History
Introduced in R2018a

 promote

3-311

See Also
slreq.Requirement | slreq.ReqSet | demote

3 Methods

3-312

remove
Class: slreq.Requirement
Package: slreq

Remove requirement from requirement set

Syntax
count = remove(req)
count = remove(parentReq,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN)

Description
count = remove(req) removes the requirement req and returns the number of requirements
deleted. If req has child requirements, they are also deleted.

count = remove(parentReq,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN) removes child requirements of parentReq that match the properties specified by
PropertyName and PropertyValue. The function returns the number of requirements deleted. The
parent requirement is not removed.

Note When you remove a requirement, the variable corresponding to the removed
slreq.Requirement object remains in the workspace but is no longer a valid slreq.Requirement
object.

Input Arguments
req — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

parentReq — Parent requirement
slreq.Requirement object

Parent requirement, specified as an slreq.Requirement object.

PropertyName — Requirement property
character vector

Requirement property name, specified as a character vector. See the valid property names in the
properties section of slreq.Requirement.
Example: 'Type', 'Id', 'Keywords'

PropertyValue — Requirement property value
character vector | character array | datetime value | scalar | logical | structure array

 remove

3-313

Requirement property value, specified as a character vector, character array, datetime value, scalar,
logical, or structure array. The value depends on the specified propertyName. See the valid
property values in the properties section of slreq.Requirement.
Example: 'Functional', '1.1.1', 'Design'

Output Arguments
count — Removed requirements count
double

Total number of requirements that were removed, returned as a double.

Examples

Remove a Single Requirement

This example shows how to find and remove a single requirement.

Load a requirement set file. Find a requirement in the requirement set by using the ID number, then
remove it.

rs = slreq.load('crs_req_func_spec.slreqx');
req = find(rs,'Type','Requirement','ID','#2');
count = remove(req)

count = 1

Cleanup

Clean up commands. Clear the open requirement sets without saving changes and close the open
models without saving changes.

slreq.clear;
bdclose all;

Remove a Parent Requirement

This example shows how to remove a parent requirement and its children.

Load a requirement set and find a parent requirement by using the ID number. Confirm that it is a
parent requirement by checking if it has children, then remove the requirement. When you remove a
parent requirement, the children are also removed.

rs = slreq.load('crs_req_func_spec.slreqx');
parentReq1 = find(rs,'Type','Requirement','ID','#24');
childReqs1 = children(parentReq1)

childReqs1=1×12 object
 1x12 Requirement array with properties:

 Type
 Id

3 Methods

3-314

 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 IndexEnabled
 IndexNumber
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

count2 = remove(parentReq1)

count2 = 13

Cleanup

Clean up commands. Clear the open requirement sets without saving changes and close the open
models without saving changes.

slreq.clear;
bdclose all;

Remove Requirements that Match Property Types

This example shows how to remove child requirements that match a property type, and how to
automate the process of removing all requirements with a matching property type.

Remove Child Requirements that Match Property Types

Load a requirement set file and find a parent requirement by using the ID number.

rs = slreq.load('crs_req_func_spec.slreqx');
parentReq = find(rs,'Type','Requirement','ID','#63');

Confirm that the requirement is a parent requirement by checking if it has children, and remove child
requirements that match that revision number.

childReqs = children(parentReq)

childReqs=1×7 object
 1x7 Requirement array with properties:

 Type
 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy

 remove

3-315

 ModifiedBy
 IndexEnabled
 IndexNumber
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

count1 = remove(parentReq,'FileRevision',54)

count1 = 4

Remove Multiple Requirements that Match Property Types

Create a requirements array by finding all requirements in the requirement set that were modified in
revision 18.

reqs = find(rs,'Type','Requirement','FileRevision',18);

Initialize the count variable, then loop through the requirements array and delete all of the
requirements. Increment the count variable each time a requirement is deleted, then display the total
number of requirements deleted.

count2 = 0;
for i = 1:numel(reqs)
 count2 = count2 + remove(reqs(i));
end
count2

count2 = 4

Cleanup

Clean up commands. Clear the open requirement sets without saving changes and close the open
models without saving changes.

slreq.clear;
bdclose all;

Version History
Introduced in R2018a

See Also
slreq.Requirement | add | slreq.find

3 Methods

3-316

reqSet
Class: slreq.Requirement
Package: slreq

Return parent requirement set

Syntax
rsout = reqSet(req)

Description
rsout = reqSet(req) returns the parent requirement set rsout to which the requirement req
belongs.

Input Arguments
req — Requirement object
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

Output Arguments
rsout — Parent requirement set
slreq.ReqSet object

The parent requirement set of the requirement req, returned as an slreq.ReqSet object.

Examples
Query Requirement Set Information

% Load a new requirement set file and select one requirement
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allReqs = find(rs, 'Type', 'Requirement');
req = allReqs(1);

% Query which requirement set req belongs to
reqSet(req)

ans =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 63
 Dirty: 0

 reqSet

3-317

 CustomAttributeNames: {}
 CreatedBy: 'Jane Doe'
 CreatedOn: 27-Feb-2017 10:20:39
 ModifiedBy: 'John Doe'
 ModifiedOn: 08-Mar-2017 09:27:31

Version History
Introduced in R2018a

See Also
slreq.Requirement | slreq.ReqSet | parent

3 Methods

3-318

setAttribute
Class: slreq.Requirement
Package: slreq

Set requirement property values

Syntax
setAttribute(req,propertyName,propertyValue)

Description
setAttribute(req,propertyName,propertyValue) sets a requirement property,
propertyName, to the value specified by propertyValue for the requirement req. The property
can be a built-in property, a custom attribute, or a stereotype property.

Note To set the value of a stereotype property, you must pass the fully qualified name of the property.
For example, the fully qualified name for a property called Status in a stereotype called
myStereotype in a profile called myProfile is myProfile.myStereotype.Status.

Input Arguments
req — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

propertyName — Requirement property name
string scalar | character vector

Requirement property name, specified as a string scalar or character vector.
Example: "Description"

propertyValue — Requirement property value
string scalar | character array | boolean | ...

Requirement property value, specified as a:

• String scalar
• Character array
• boolean
• datetime
• single
• double
• int8

 setAttribute

3-319

• int16
• int32
• int64
• uint8
• uint16
• uint32
• uint64
• enumeration

The data type depends on the type of the built-in property, custom attribute, or stereotype property.

Examples

Import Profile and Get and Set Stereotype Properties

This example shows how to assign a profile to a requirement set and get and set stereotype property
values for requirements.

Save the location of the current folder as a variable.

initFolder = pwd;

Open the ShortestPath project.

slreqShortestPathProjectStart;

Load the shortest_path_tests_reqs requirement set.

rs = slreq.load("shortest_path_tests_reqs");

Assign the TestReqProfile profile to the shortest_path_tests_reqs requirement set.

importProfile(rs,strcat(initFolder,"\TestReqProfile"));

Find the requirement with index 2.1.1. Apply the TestRequirement stereotype to the requirement.

testReq = find(rs,Index="2.1.1");
testReq.Type = "TestReqProfile.TestRequirement";

Get the value of the Reviewed stereotype property.

val = getAttribute(testReq,"TestReqProfile.TestRequirement.Reviewed")

val = 0

Set the value of the Reviewed stereotype property to 1.

setAttribute(testReq,"TestReqProfile.TestRequirement.Reviewed",1)

3 Methods

3-320

Tips
• To set property values for links, use slreq.Link.setAttribute.

Version History
Introduced in R2018a

See Also
slreq.Requirement | slreq.ReqSet | getAttribute

Topics
“Customize Requirements and Links by Using Stereotypes”
“Manage Custom Attributes for Requirements by Using the Requirements Toolbox API”

 setAttribute

3-321

deleteLinks
Package: slreq

Delete links for line ranges

Syntax
count = deleteLinks(lr)

Description
count = deleteLinks(lr) deletes links associated with the line range lr and returns the number
of deleted links.

Examples

Remove Line Ranges

This example shows how to remove an slreq.TextRange object.

Open the myAdd code file.

file = "myAdd.m";
open(file);

Get the slreq.TextRange object associated with lines 1–3 in the myAdd function.

cr = slreq.getTextRange(file,[1 3]);

Get the links associated with the slreq.TextRange object.

links = getLinks(cr)

links=1×3 object
 1×3 Link array with properties:

 Type
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedOn
 ModifiedBy
 Revision
 SID
 Comments

Delete the links associated with the slreq.TextRange object.

count = deleteLinks(cr)

3 Methods

3-322

count = 3

Remove the slreq.TextRange object associated with line number 3.

remove(cr)

Input Arguments
lr — Line range
slreq.TextRange object

Line range, specified as an slreq.TextRange object.

Output Arguments
count — Number of links removed
scalar double

Number of links removed, returned as a scalar double.

Version History
Introduced in R2022b

See Also
slreq.TextRange | slreq.getTextRange | slreq.Link | getLinks | remove

Topics
“Requirements Traceability for MATLAB Code”

 deleteLinks

3-323

getLineRange
Package: slreq

Get line numbers for line range

Syntax
lines = getLineRange(lr)

Description
lines = getLineRange(lr) returns the line numbers for the line range lr.

Examples

Modify Line Numbers for Line Ranges

This example shows how to modify line numbers for an slreq.TextRange object.

Open the myAdd code file.

file = "myAdd.m";
open(file);

Get the slreq.TextRange object associated with the third line in the myAdd function.

cr = slreq.getTextRange(file,3);

Get the line numbers associated with the slreq.TextRange object.

lines = getLineRange(cr)

lines = 1×2

 3 3

Associate the slreq.TextRange object with the function definition line.

setLineRange(cr,1)

Confirm that the slreq.TextRange object is associated with the function definition line by getting
the text contents of the line range.

text = getText(cr)

text =
'function y = myAdd(u,v)'

3 Methods

3-324

Input Arguments
lr — Line range
slreq.TextRange object

Line range, specified as an slreq.TextRange object.

Output Arguments
lines — Start and end line numbers
double array

Start and end line numbers of the line range, returned as a double array of the form [start end].

Version History
Introduced in R2022b

See Also
slreq.TextRange | slreq.getTextRange

Topics
“Requirements Traceability for MATLAB Code”

 getLineRange

3-325

getLinks
Package: slreq

Get links for line range

Syntax
myLinks = getLinks(lr)

Description
myLinks = getLinks(lr) returns the links associated with the line range lr.

Examples

Remove Line Ranges

This example shows how to remove an slreq.TextRange object.

Open the myAdd code file.

file = "myAdd.m";
open(file);

Get the slreq.TextRange object associated with lines 1–3 in the myAdd function.

cr = slreq.getTextRange(file,[1 3]);

Get the links associated with the slreq.TextRange object.

links = getLinks(cr)

links=1×3 object
 1×3 Link array with properties:

 Type
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedOn
 ModifiedBy
 Revision
 SID
 Comments

Delete the links associated with the slreq.TextRange object.

count = deleteLinks(cr)

3 Methods

3-326

count = 3

Remove the slreq.TextRange object associated with line number 3.

remove(cr)

Input Arguments
lr — Line range
slreq.TextRange object

Line range, specified as an slreq.TextRange object.

Output Arguments
myLinks — Links
slreq.Link array

Links, returned as an slreq.Link array.

Version History
Introduced in R2022b

See Also
slreq.TextRange | slreq.getTextRange | slreq.Link | deleteLinks

Topics
“Requirements Traceability for MATLAB Code”

 getLinks

3-327

getText
Package: slreq

Get contents of line range

Syntax
text = getText(lr)

Description
text = getText(lr) returns the text contents of the line range lr.

Examples

Modify Line Numbers for Line Ranges

This example shows how to modify line numbers for an slreq.TextRange object.

Open the myAdd code file.

file = "myAdd.m";
open(file);

Get the slreq.TextRange object associated with the third line in the myAdd function.

cr = slreq.getTextRange(file,3);

Get the line numbers associated with the slreq.TextRange object.

lines = getLineRange(cr)

lines = 1×2

 3 3

Associate the slreq.TextRange object with the function definition line.

setLineRange(cr,1)

Confirm that the slreq.TextRange object is associated with the function definition line by getting
the text contents of the line range.

text = getText(cr)

text =
'function y = myAdd(u,v)'

3 Methods

3-328

Input Arguments
lr — Line range
slreq.TextRange object

Line range, specified as an slreq.TextRange object.

Output Arguments
text — Text contents
character array

Text contents of the code range object, returned as a character array.

Version History
Introduced in R2022b

See Also
slreq.TextRange | slreq.getTextRange

Topics
“Requirements Traceability for MATLAB Code”

 getText

3-329

remove
Package: slreq

Delete unused line ranges

Syntax
remove(lr)

Description
remove(lr) deletes the unused line range lr.

Note You cannot delete a code range object that has links. Use the deleteLinks function to delete
links.

Examples

Remove Line Ranges

This example shows how to remove an slreq.TextRange object.

Open the myAdd code file.

file = "myAdd.m";
open(file);

Get the slreq.TextRange object associated with lines 1–3 in the myAdd function.

cr = slreq.getTextRange(file,[1 3]);

Get the links associated with the slreq.TextRange object.

links = getLinks(cr)

links=1×3 object
 1×3 Link array with properties:

 Type
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedOn
 ModifiedBy
 Revision
 SID
 Comments

3 Methods

3-330

Delete the links associated with the slreq.TextRange object.

count = deleteLinks(cr)

count = 3

Remove the slreq.TextRange object associated with line number 3.

remove(cr)

Input Arguments
lr — Line range
slreq.TextRange object

Line range, specified as an slreq.TextRange object.

Version History
Introduced in R2022b

See Also
slreq.TextRange | slreq.getTextRange | getLinks | deleteLinks

Topics
“Requirements Traceability for MATLAB Code”

 remove

3-331

setLineRange
Package: slreq

Set line numbers for line range

Syntax
setLineRange(lr,lines)

Description
setLineRange(lr,lines) modifies the line numbers for the line range lr.

Examples

Modify Line Numbers for Line Ranges

This example shows how to modify line numbers for an slreq.TextRange object.

Open the myAdd code file.

file = "myAdd.m";
open(file);

Get the slreq.TextRange object associated with the third line in the myAdd function.

cr = slreq.getTextRange(file,3);

Get the line numbers associated with the slreq.TextRange object.

lines = getLineRange(cr)

lines = 1×2

 3 3

Associate the slreq.TextRange object with the function definition line.

setLineRange(cr,1)

Confirm that the slreq.TextRange object is associated with the function definition line by getting
the text contents of the line range.

text = getText(cr)

text =
'function y = myAdd(u,v)'

3 Methods

3-332

Input Arguments
lr — Line range
slreq.TextRange object

Line range, specified as an slreq.TextRange object.

lines — Start and end line numbers
scalar double | double array

Start and end line numbers for the line range, specified as a double array of the form [start end]
or a scalar double.
Example: [1 4], 1

Version History
Introduced in R2022b

See Also
slreq.TextRange | slreq.getTextRange | getLineRange

Topics
“Requirements Traceability for MATLAB Code”

 setLineRange

3-333

show
Package: slreq

Open and highlight line range in MATLAB Editor

Syntax
show(lr)

Description
show(lr) opens the file associated with the line range lr in the MATLAB Editor and highlights the
line range.

Examples

Create Line Ranges and Link to Requirement

This example shows how to create an slreq.TextRange object and link it to a requirement.

Create an slreq.TextRange object that corresponds to line numbers 1 and 2 in the myAdd function.

tr = slreq.createTextRange("myAdd.m",[1 2]);

View the slreq.TextRange object in the MATLAB® Editor.

show(tr);

Load the myAddRequirements requirement set.

rs = slreq.load("myAddRequirements");

Get a handle to the requirement with the summary Add u and v.

req = find(rs,Summary="Add u and v");

Create a link from the slreq.TextRange object to the requirement.

myLink = slreq.createLink(tr,req);

Input Arguments
lr — Line range
slreq.TextRange object

Line range, specified as an slreq.TextRange object.

3 Methods

3-334

Version History
Introduced in R2022b

See Also
slreq.TextRange | slreq.getTextRange | getText

Topics
“Requirements Traceability for MATLAB Code”

 show

3-335

activate
Package: slreq

Apply view settings

Syntax
activate(view)

Description
activate(view) applies the view settings specified by view to the Requirements Editor and
Requirements Perspective.

Examples

Create and Apply View to Requirements Editor

This example shows how to create a view and apply it to the Requirements Editor and
Requirements Perspective.

Open the myAddRequirements requirement set, which contains requirements with Type set to
Functional.

rs = slreq.open("myAddRequirements");

Create a view with the name NewView.

myView = slreq.View.create("NewView")

myView =
 View with properties:

 Name: 'NewView'
 ReqFilter: ''
 LinkFilter: ''
 Host: ''

Set the requirement filter to only display requirements that have Type set to Container.

myView.ReqFilter = "{'ReqType','Container'};"

myView =
 View with properties:

 Name: 'NewView'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

3 Methods

3-336

Check if the view is valid.

tf = isValid(myView)

tf = logical
 1

Apply the view to the Requirements Editor and Requirements Perspective.

activate(myView)

Confirm that the active view is NewView.

appliedView = slreq.View.getActiveView

appliedView =
 View with properties:

 Name: 'NewView'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

The myAddRequirements requirement set does not contain any requirements with Type set to
Container, so all of the requirements are filtered out.

Clear the loaded requirement sets and link sets and close the Requirements Editor.

slreq.clear;

Input Arguments
view — View settings
slreq.View object

View settings, specified as an slreq.View object.

Version History
Introduced in R2022b

 activate

3-337

See Also
Objects
slreq.View

Topics
“Filter Requirements and Links in the Requirements Editor”

3 Methods

3-338

activateDefaultView
Package: slreq

Apply default view settings

Syntax
slreq.View.activateDefaultView

Description
slreq.View.activateDefaultView applies the default view settings to the Requirements
Editor and Requirements Perspective.

Examples

Get and Delete View from Requirements Editor

This example shows how to import a view settings file, get the available views for the Requirements
Editor and Requirements Perspective, and delete a view.

Open the myAddRequirements requirement set.

rs = slreq.open("myAddRequirements");

Load the view settings file, ViewFile.mat, which contains views that filter the Requirements
Editor and Requirements Perspective.

slreq.importViewSettings("ViewFile.mat")

Get the available views.

views = slreq.View.getViews

views=1×2 object
 1×2 View array with properties:

 Name
 ReqFilter
 LinkFilter
 Host

Display the views and their properties.

views(1)

ans =
 View with properties:

 Name: 'default view'

 activateDefaultView

3-339

 ReqFilter: ''
 LinkFilter: ''
 Host: ''

views(2)

ans =
 View with properties:

 Name: 'ReqView'
 ReqFilter: '{'ReqType','
 LinkFilter: ''
 Host: ''

Apply the view ReqView.

activate(views(2))

The view ReqView has a requirement filter with an incomplete syntax.

Get the error that the software returned when it applied the view.

msg = getErrorMessage(views(2))

msg = struct with fields:
 requirement: 'Error parsing Requirements view filter: Error: This statement is incomplete.'
 link: ''

Apply the default view to the Requirements Editor and Requirements Perspective.

slreq.View.activateDefaultView

Delte the view ReqView.

deletedView = delete(views(2))

3 Methods

3-340

deletedView =
 View with no properties.

Clear the loaded requirement sets and link sets and close the Requirements Editor.

slreq.clear;

Version History
Introduced in R2022b

See Also
Objects
slreq.View

Topics
“Filter Requirements and Links in the Requirements Editor”

 activateDefaultView

3-341

create
Package: slreq

Create view settings

Syntax
view = slreq.View.create(viewName)
view = slreq.View.create(viewName,reqSetName)
view = slreq.View.create(___ ,existingView)

Description
view = slreq.View.create(viewName) creates a view with the name viewName. Requirements
Toolbox saves the view in the preferences folder.

view = slreq.View.create(viewName,reqSetName) saves the view settings in the
requirement set specified by reqSetName.

view = slreq.View.create(___ ,existingView) saves a copy of the existing view settings,
existingView.

Examples

Create and Apply View to Requirements Editor

This example shows how to create a view and apply it to the Requirements Editor and
Requirements Perspective.

Open the myAddRequirements requirement set, which contains requirements with Type set to
Functional.

rs = slreq.open("myAddRequirements");

Create a view with the name NewView.

myView = slreq.View.create("NewView")

myView =
 View with properties:

 Name: 'NewView'
 ReqFilter: ''
 LinkFilter: ''
 Host: ''

Set the requirement filter to only display requirements that have Type set to Container.

myView.ReqFilter = "{'ReqType','Container'};"

3 Methods

3-342

myView =
 View with properties:

 Name: 'NewView'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

Check if the view is valid.

tf = isValid(myView)

tf = logical
 1

Apply the view to the Requirements Editor and Requirements Perspective.

activate(myView)

Confirm that the active view is NewView.

appliedView = slreq.View.getActiveView

appliedView =
 View with properties:

 Name: 'NewView'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

The myAddRequirements requirement set does not contain any requirements with Type set to
Container, so all of the requirements are filtered out.

Clear the loaded requirement sets and link sets and close the Requirements Editor.

slreq.clear;

 create

3-343

Create View and Store in Requirement Set

This example shows how to create a view and store it in a requirement set.

Load and open the myAddRequirements requirement set.

rs = slreq.open("myAddRequirements");

Create a view and store it in the requirement set.

myView = slreq.View.create("NewView","myAddRequirements");

Clear the loaded requirement sets and close the Requirements Editor.

slreq.clear;

Create Copy of View

This example shows how to create a copy of an existing view.

Load the myAddRequirements requirement set.

rs = slreq.open("myAddRequirements");

Load the view settings file ViewFile2.mat, which contains a view stored in the preferences folder.

slreq.importViewSettings("ViewFile2")

Get the existing views from the view settings file.

views = slreq.View.getViews

views=1×2 object
 1×2 View array with properties:

 Name
 ReqFilter
 LinkFilter
 Host

Assign the second view in the array to a variable.

viewToCopy = views(2)

viewToCopy =
 View with properties:

 Name: 'NewView'
 ReqFilter: '{'ReqType','Container'};'
 LinkFilter: ''
 Host: ''

Create a copy of the view and store it in the requirement set.

copiedView = slreq.View.create("CopiedView","myAddRequirements",viewToCopy);

3 Methods

3-344

Clear the loaded requirement sets and close the Requirements Editor.

slreq.clear;

Input Arguments
viewName — View name
string scalar | character vector

View name, specified as a string scalar or a character vector.
Example: "myView"

reqSetName — Requirement set name
string scalar | character vector

Requirement set name, specified as a string scalar or a character vector.
Example: "myReqSet"

existingView — Existing view name
string scalar | character vector

Existing view name, specified as a string scalar or a character vector.
Example: "myView"

Output Arguments
view — View settings
slreq.View object

View settings, returned as an slreq.View object.

Version History
Introduced in R2022b

See Also
Objects
slreq.View

Topics
“Filter Requirements and Links in the Requirements Editor”
“Where MATLAB Stores Preferences”

 create

3-345

delete
Package: slreq

Delete view settings

Syntax
emptyView = delete(view)

Description
emptyView = delete(view) deletes the view settings specified by view and returns an empty
slreq.View object,.

Examples

Get and Delete View from Requirements Editor

This example shows how to import a view settings file, get the available views for the Requirements
Editor and Requirements Perspective, and delete a view.

Open the myAddRequirements requirement set.

rs = slreq.open("myAddRequirements");

Load the view settings file, ViewFile.mat, which contains views that filter the Requirements
Editor and Requirements Perspective.

slreq.importViewSettings("ViewFile.mat")

Get the available views.

views = slreq.View.getViews

views=1×2 object
 1×2 View array with properties:

 Name
 ReqFilter
 LinkFilter
 Host

Display the views and their properties.

views(1)

ans =
 View with properties:

 Name: 'default view'

3 Methods

3-346

 ReqFilter: ''
 LinkFilter: ''
 Host: ''

views(2)

ans =
 View with properties:

 Name: 'ReqView'
 ReqFilter: '{'ReqType','
 LinkFilter: ''
 Host: ''

Apply the view ReqView.

activate(views(2))

The view ReqView has a requirement filter with an incomplete syntax.

Get the error that the software returned when it applied the view.

msg = getErrorMessage(views(2))

msg = struct with fields:
 requirement: 'Error parsing Requirements view filter: Error: This statement is incomplete.'
 link: ''

Apply the default view to the Requirements Editor and Requirements Perspective.

slreq.View.activateDefaultView

Delte the view ReqView.

deletedView = delete(views(2))

 delete

3-347

deletedView =
 View with no properties.

Clear the loaded requirement sets and link sets and close the Requirements Editor.

slreq.clear;

Input Arguments
view — View settings
slreq.View object

View settings, specified as an slreq.View object.

Version History
Introduced in R2022b

See Also
Objects
slreq.View

Topics
“Filter Requirements and Links in the Requirements Editor”

3 Methods

3-348

getActiveView
Package: slreq

Get applied view settings

Syntax
view = slreq.View.getActiveView

Description
view = slreq.View.getActiveView returns the currently applied view settings from the
Requirements Editor and Requirements Perspective.

Examples

Create and Apply View to Requirements Editor

This example shows how to create a view and apply it to the Requirements Editor and
Requirements Perspective.

Open the myAddRequirements requirement set, which contains requirements with Type set to
Functional.

rs = slreq.open("myAddRequirements");

Create a view with the name NewView.

myView = slreq.View.create("NewView")

myView =
 View with properties:

 Name: 'NewView'
 ReqFilter: ''
 LinkFilter: ''
 Host: ''

Set the requirement filter to only display requirements that have Type set to Container.

myView.ReqFilter = "{'ReqType','Container'};"

myView =
 View with properties:

 Name: 'NewView'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

 getActiveView

3-349

Check if the view is valid.

tf = isValid(myView)

tf = logical
 1

Apply the view to the Requirements Editor and Requirements Perspective.

activate(myView)

Confirm that the active view is NewView.

appliedView = slreq.View.getActiveView

appliedView =
 View with properties:

 Name: 'NewView'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

The myAddRequirements requirement set does not contain any requirements with Type set to
Container, so all of the requirements are filtered out.

Clear the loaded requirement sets and link sets and close the Requirements Editor.

slreq.clear;

Output Arguments
view — View settings
slreq.View object

View settings, returned as an slreq.View object.

Version History
Introduced in R2022b

3 Methods

3-350

See Also
Objects
slreq.View

Topics
“Filter Requirements and Links in the Requirements Editor”

 getActiveView

3-351

getErrorMessage
Package: slreq

Get view settings error message

Syntax
msg = getErrorMessage(view)

Description
msg = getErrorMessage(view) returns the error messages that resulted when the view settings,
view, were applied to the Requirements Editor and Requirements Perspective.

Examples

Get and Delete View from Requirements Editor

This example shows how to import a view settings file, get the available views for the Requirements
Editor and Requirements Perspective, and delete a view.

Open the myAddRequirements requirement set.

rs = slreq.open("myAddRequirements");

Load the view settings file, ViewFile.mat, which contains views that filter the Requirements
Editor and Requirements Perspective.

slreq.importViewSettings("ViewFile.mat")

Get the available views.

views = slreq.View.getViews

views=1×2 object
 1×2 View array with properties:

 Name
 ReqFilter
 LinkFilter
 Host

Display the views and their properties.

views(1)

ans =
 View with properties:

 Name: 'default view'

3 Methods

3-352

 ReqFilter: ''
 LinkFilter: ''
 Host: ''

views(2)

ans =
 View with properties:

 Name: 'ReqView'
 ReqFilter: '{'ReqType','
 LinkFilter: ''
 Host: ''

Apply the view ReqView.

activate(views(2))

The view ReqView has a requirement filter with an incomplete syntax.

Get the error that the software returned when it applied the view.

msg = getErrorMessage(views(2))

msg = struct with fields:
 requirement: 'Error parsing Requirements view filter: Error: This statement is incomplete.'
 link: ''

Apply the default view to the Requirements Editor and Requirements Perspective.

slreq.View.activateDefaultView

Delte the view ReqView.

deletedView = delete(views(2))

 getErrorMessage

3-353

deletedView =
 View with no properties.

Clear the loaded requirement sets and link sets and close the Requirements Editor.

slreq.clear;

Input Arguments
view — View settings
slreq.View object

View settings, specified as an slreq.View object.

Output Arguments
msg — Error messages
structure

Error messages, returned as a struct with the fields requirement and link.

Version History
Introduced in R2022b

See Also
Objects
slreq.View

3 Methods

3-354

getViews
Package: slreq

Get available views

Syntax
views = slreq.View.getViews

Description
views = slreq.View.getViews returns the available views from the Requirements Editor and
Requirements Perspective.

Examples

Get and Delete View from Requirements Editor

This example shows how to import a view settings file, get the available views for the Requirements
Editor and Requirements Perspective, and delete a view.

Open the myAddRequirements requirement set.

rs = slreq.open("myAddRequirements");

Load the view settings file, ViewFile.mat, which contains views that filter the Requirements
Editor and Requirements Perspective.

slreq.importViewSettings("ViewFile.mat")

Get the available views.

views = slreq.View.getViews

views=1×2 object
 1×2 View array with properties:

 Name
 ReqFilter
 LinkFilter
 Host

Display the views and their properties.

views(1)

ans =
 View with properties:

 Name: 'default view'

 getViews

3-355

 ReqFilter: ''
 LinkFilter: ''
 Host: ''

views(2)

ans =
 View with properties:

 Name: 'ReqView'
 ReqFilter: '{'ReqType','
 LinkFilter: ''
 Host: ''

Apply the view ReqView.

activate(views(2))

The view ReqView has a requirement filter with an incomplete syntax.

Get the error that the software returned when it applied the view.

msg = getErrorMessage(views(2))

msg = struct with fields:
 requirement: 'Error parsing Requirements view filter: Error: This statement is incomplete.'
 link: ''

Apply the default view to the Requirements Editor and Requirements Perspective.

slreq.View.activateDefaultView

Delte the view ReqView.

deletedView = delete(views(2))

3 Methods

3-356

deletedView =
 View with no properties.

Clear the loaded requirement sets and link sets and close the Requirements Editor.

slreq.clear;

Output Arguments
views — View settings
slreq.View array

View settings, returned as an slreq.View array.

Version History
Introduced in R2022b

See Also
Objects
slreq.View

Topics
“Filter Requirements and Links in the Requirements Editor”

 getViews

3-357

isValid
Package: slreq

Check validity of view settings

Syntax
tf = isValid(view)

Description
tf = isValid(view) checks if the view specified by view exists. The function returns 1 if the view
exists.

Examples

Create and Apply View to Requirements Editor

This example shows how to create a view and apply it to the Requirements Editor and
Requirements Perspective.

Open the myAddRequirements requirement set, which contains requirements with Type set to
Functional.

rs = slreq.open("myAddRequirements");

Create a view with the name NewView.

myView = slreq.View.create("NewView")

myView =
 View with properties:

 Name: 'NewView'
 ReqFilter: ''
 LinkFilter: ''
 Host: ''

Set the requirement filter to only display requirements that have Type set to Container.

myView.ReqFilter = "{'ReqType','Container'};"

myView =
 View with properties:

 Name: 'NewView'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

3 Methods

3-358

Check if the view is valid.

tf = isValid(myView)

tf = logical
 1

Apply the view to the Requirements Editor and Requirements Perspective.

activate(myView)

Confirm that the active view is NewView.

appliedView = slreq.View.getActiveView

appliedView =
 View with properties:

 Name: 'NewView'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

The myAddRequirements requirement set does not contain any requirements with Type set to
Container, so all of the requirements are filtered out.

Clear the loaded requirement sets and link sets and close the Requirements Editor.

slreq.clear;

Input Arguments
view — View settings
slreq.View object

View settings, specified as an slreq.View object.

 isValid

3-359

Output Arguments
tf — Validity check status
0 | 1

Validity check status, returned as a 1 or 0 of data type logical.

Version History
Introduced in R2022b

See Also
Objects
slreq.View

Topics
“Filter Requirements and Links in the Requirements Editor”

3 Methods

3-360

Blocks

4

Requirements Table
Model formal requirements with input conditions
Library: Requirements Toolbox

Description
The Requirements Table block models formal requirements. The block starts with evaluating
conditions listed in the Precondition column. If the conditions are satisfied, you can check if other
simulation data meet specified conditions in the Postcondition column, or execute desired actions,
such as block outputs or functions, in the Action column. For more information, see “Use a
Requirements Table Block to Create Formal Requirements”.

You can also constrain requirements based on physical limitations of your model by defining
assumptions in the Assumptions tab. See “Add Assumptions to Requirements”.

You can configure this block only if you have Requirements Toolbox.

Ports
Input

Port_1 — Input port
scalar | vector | matrix

Input port, specified as a scalar, vector, or matrix. Each input data that you define has a
corresponding input port.

Dependencies

To create input ports, open the block and create input data in the Symbols pane. See “Define Data in
Requirements Table Blocks”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | string | fixed point | enumerated | bus

Output

Port_1 — Output port
scalar | vector | matrix

Output port, specified as a scalar, vector, or matrix. Each output data that you define has a
corresponding output port.

4 Blocks

4-2

Dependencies

To create output ports, open the block and create output data in the Symbols pane. See “Define Data
in Requirements Table Blocks”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | string | fixed point | enumerated | bus

Parameters
Main

Show port labels — Display options for port labels
FromPortIcon (default) | none | FromPortBlockName | SignalName

Select how to display port labels on the Requirements Table block icon.

• none – Do not display port labels.
• FromPortIcon – Display the name of the input and output data.
• FromPortBlockName – Display the name of the input and output data.
• SignalName – If the signal connected to the port is named, display the signal name. Otherwise,

display the name of the data.

Programmatic Use
Parameter: ShowPortLabels
Type: string scalar or character vector
Value: "none" | "FromPortIcon" | "FromPortBlockName" | "SignalName"
Default: "FromPortIcon"

Read/Write permissions — Levels of access to contents of block
ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the Requirements Table block.

• ReadWrite – Enable opening and modifying of Requirements Table block contents.
• ReadOnly – Enable opening of the Requirements Table block.
• NoReadOrWrite – Disable opening or modifying of the Requirements Table block.

Note When you attempt to view the contents of a Requirements Table block whose Read/Write
permissions parameter is NoReadOrWrite, the block does not respond. For example, when you
double-click the Requirements Table block, Simulink does not open the table contents and does not
display messages.

Programmatic Use
Parameter: Permissions
Type: string scalar or character vector
Value: "ReadWrite" | "ReadOnly" | "NoReadOrWrite"
Default: "ReadWrite"

Minimize algebraic loop occurrences — Option to eliminate artificial algebraic loops
off (default) | on

 Requirements Table

4-3

Try to eliminate artificial algebraic loops that include the atomic unit during simulation.

• off – Do not try to eliminate artificial algebraic loops that include the atomic unit.
• on – Try to eliminate artificial algebraic loops that include the atomic unit.

Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: string scalar or character vector
Value: "off" | "on"
Default: "off"

Sample time (-1 for inherited) — Specify time interval
-1 (default) | [Ts 0]

Specify whether entries in this block must run at the same rate or can run at different rates.

• If entries in the Requirements Table block can run at different rates, specify the sample time as
inherited (-1).

• If entries must run at the same rate, specify the sample time, Ts, corresponding to this rate.

Programmatic Use
Parameter: SystemSampleTime
Type: string scalar or character vector
Value: "-1" | "[Ts 0]"
Default: "-1"

Code Generation

To enable these parameters, you must have Simulink Coder™ or Embedded Coder®.

Function packaging — Code format
Auto (default) | Inline | Nonreusable function | Reusable function

Select the code format the block uses to generate code for an atomic (nonvirtual) unit.

• Auto – Simulink Coder and Embedded Coder choose the optimal code format based on the type
and number of instances of the Requirements Table block in the model.

• Inline – Simulink Coder and Embedded Coder inline the Requirements Table block
unconditionally.

• Nonreusable function – Simulink Coder explicitly generates a separate function in a separate
file.

• Reusable function – Simulink Coder and Embedded Coder generate a function with arguments
that allows reuse of block code when a model includes multiple instances of the block.

This option also generates a function with arguments that allows the Requirements Table block to
be reused in the generated code of a model reference hierarchy that includes multiple instances of
a Requirements Table block across referenced models. In this case, the block must be in a library.

Tips

• When you want to represent multiple instances of a Requirements Table block as one reusable
function, you can designate each of the instances as Auto or as Reusable function. It is best
to use one or the other, as using both creates two reusable functions, one for each designation.

4 Blocks

4-4

The outcomes of these choices differ only when reuse is not possible. Selecting Auto does not
allow control of the function or file name for the Requirements Table block code.

• The Reusable function and Auto options both try to determine if multiple instances of a
Requirements Table block exist and if the code can be reused. The options differ only when reuse
is not possible:

• Auto yields inlined code, or if circumstances prohibit inlining, the setting separates functions
for each Requirements Table block instance.

• Reusable function yields a separate function with arguments for each Requirements Table
block instance in the model.

• If you select Reusable function while your generated code is under source control, set File
name options to Use subsystem name, Use function name, or User specified.
Otherwise, the names of your code files change when you modify your model, which prevents
source control on your files.

Programmatic Use
Parameter: RTWSystemCode
Type: string scalar or character vector
Value: "Auto" | "Inline" | "Nonreusable function" | "Reusable function"
Default: "Auto"

Function name options — How to name generated function
Auto (default) | Use subsystem name | User specified

Select how Simulink Coder names the function it generates for the block.

If you have Embedded Coder, you can control function names with options on the Configuration
Parameter Code Generation > Identifiers pane.

• Auto – Assign a unique function name using the default naming convention, model_block(),
where model is the name of the model and block is the name of the block (or that of an identical
one when code is being reused).

• Use subsystem name – Use the Requirements Table block name as the function name. By
default, the function name uses the naming convention model_block.

Note When a Requirements Table block is in a library block and the Function packaging
parameter is set to Reusable function, if you set the Use subsystem name option, the code
generator uses the name of the library block for the function name and file name.

• User specified – Enable the Function name field. Enter a legal C or C++ function name,
which must be unique.

For more information, see “Generate Subsystem Code as Separate Function and Files” (Simulink
Coder).

Dependencies

To enable this parameter, set Function packaging to Nonreusable function or Reusable
function.

Programmatic Use
Parameter: RTWFcnNameOpts
Type: string scalar or character vector

 Requirements Table

4-5

Value: "Auto" | "Use subsystem name" | "User specified"
Default: "Auto"

Function name — Name of function for block code
"" (default) | function name

Name of the function for the block code.

Use this parameter if you want to give the function a specific name instead of using an autogenerated
name or the block name. For more information, see “Generate Subsystem Code as Separate Function
and Files” (Simulink Coder).

Dependencies

To enable this parameter, set the Function name options parameter to User specified.

Programmatic Use
Parameter: RTWFcnName
Type: string scalar or character vector
Value: "" | "<function name>"
Default: ""

File name options — How to name generated file
Auto (default) | Use subsystem name | Use function name | User specified

How Simulink Coder names the separate file for the function it generates for the block.

• Auto – Depending on the configuration of the block and how many instances are in the model,
Auto yields different results:

• If the code generator does not generate a separate file for the block, the block code is
generated within the code module generated from the block parent system. If the block parent
is the model itself, the block code is generated within model.c or model.cpp.

• If you select Reusable function for the Function packaging parameter and your
generated code is under source control, consider specifying a File name options value other
than Auto. This prevents the generated file name from changing due to unrelated model
modifications, which is problematic for using source control to manage configurations.

• If you select Reusable function for the Function packaging parameter and there are
multiple instances of the block in a model reference hierarchy, in order to generate reusable
code for the block, File name options must be set to Auto.

• Use subsystem name – The code generator generates a separate file, using the block name as
the file name.

Note When File name options is set to Use subsystem name, the block file changes if the
model contains Model blocks, or if a model reference target is being generated for the model. In
these situations, the file name for the Requirements Table block consists of the block name
prefixed by the model name.

• Use function name – The code generator uses the function name specified by Function name
options as the file name.

• User specified – This option enables the File name (no extension) text entry field. The code
generator uses the name you enter as the file name. Enter a file name, but do not include the .c
or .cpp (or another) extension. This file name need not be unique.

4 Blocks

4-6

Note While a Requirements Table block source file name need not be unique, you must avoid
giving nonunique names that result in cyclic dependencies (for example, sys_a.h includes
sys_b.h, sys_b.h includes sys_c.h, and sys_c.h includes sys_a.h).

Dependencies

To enable this parameter, set Function packaging to Nonreusable function or Reusable
function.
Programmatic Use
Parameter: RTWFileNameOpts
Type: string scalar or character vector
Value: "Auto" | "Use subsystem name" | "Use function name" | "User specified"
Default: "Auto"

File name (no extension) — Name of generated file
"" (default) | file name

Name of the generated file. The file name that you specify does not have to be unique. However, avoid
giving non-unique names that result in cyclic dependencies (for example, sys_a.h includes
sys_b.h, sys_b.h includes sys_c.h, and sys_c.h includes sys_a.h).

For more information, see “Generate Subsystem Code as Separate Function and Files” (Simulink
Coder).
Dependencies

To enable this parameter, set File name options to User specified.
Programmatic Use
Parameter: RTWFileName
Type: string scalar or character vector
Value: "" | "<file name>"
Default: ""

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Actual data type or capability support depends on block implementation.

 Requirements Table

4-7

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
RequirementsTable

Topics
“Specify Requirements Table Block Properties”
“Define Data in Requirements Table Blocks”
“Set Data Types in Requirements Table Blocks”
“What Is a Specification Model?”

4 Blocks

4-8

System Requirements
List system requirements in Simulink models
Library: Requirements Toolbox

Description
The System Requirements block lists the system-level requirements associated with a model or
subsystem. This block is dynamically populated. It displays system requirements associated with the
level of hierarchy in which the block appears in the model. It does not list requirements associated
with individual blocks in the model. To list desired requirement links in the System Requirements
block:

1 Right-click the background of your model.
2 Select Requirements at This Level.
3 From the top of the context menu, verify that all the requirements you want to list appear in the

System Requirements block.

You can place this block anywhere in your model. It does not connect to other Simulink blocks. You
can have only one System Requirements block in a given subsystem.

When you insert this block into your Simulink model, it is populated with the system requirements, as
shown in the Airflow Calculation subsystem of the slvnvdemo_fuelsys_officereq example.

Each of the listed requirements is an active link to the requirements document. When you double-
click a requirement label, the associated requirements document opens in its editor window, scrolled
to the target location.

Parameters
Block Title

The title of the system requirements list in the model. The default title is System
Requirements. You can enter a customized title, for example, Engine Requirements.

 System Requirements

4-9

Version History
Introduced before R2006a

4 Blocks

4-10

Requirements Toolbox Tools and Apps

5

Requirements Editor
Create and edit requirements

Description
Use the Requirements Editor app to create requirement sets, requirements, import and export
requirements, and link requirements to blocks and other supported artifacts.

Open the Requirements Editor App
• Simulink Toolstrip: On the Apps tab, under Model Verification, Validation, and Test, click

Requirements Editor.
• MATLAB Toolstrip: On the Apps tab, under Verification, Validation, and Test, click

Requirements Editor.
• MATLAB command prompt: Enter slreq.editor.

Examples

Create, Open, and Delete Requirement Sets

To create a new requirement set:

1 In the Requirements Editor, click New Requirement Set.
2 Specify the name and file location of the requirement set. The editor saves the requirement set as

a SLREQX file and the requirement set appears in the Requirements Editor.

5 Requirements Toolbox Tools and Apps

5-2

You can open existing requirement sets by clicking Open and selecting a requirement set file. To

delete a requirement set, click a requirement set and click the Close button . Removing a
requirement set does not delete the SLREQX file.

Add Requirements to a Requirement Set

To add requirements to a requirement set:

1 In the left pane, select a requirement set.
2 In the Requirements section, click Add Requirement.

Each requirement you create creates an associated slreq.Requirement object. You can edit the
properties of the requirement in the Requirements Editor or programmatically. To adjust the
properties in the Requirements Editor, click the requirement. The properties appear in the right
pane of the editor.

Link Requirements to Model Artifacts

To link requirements to artifacts in models:

1 In an open Simulink model, click a model artifact. For a list of supported model artifacts, see
“Supported Model Objects for Requirements Linking”.

2 In the Requirements Editor, click the requirement you want to link.
3 In the Links section, click Add Link > Link from Selection in Simulink.

For more information, see “Create and Store Links”.

Link Requirements to MATLAB or Plain Text Code

To link requirements to lines of MATLAB code or to plain text code, such as C or H files:

1 Open the MATLAB code or plain text code in the MATLAB Editor.

Note You cannot create links to MATLAB code in MLX files.
2 Select the lines of code that you want to link.

Tip To link to MATLAB functions and enable change tracking for the entire body of the function,
create the link to the line that contains the function keyword.

3 In the Requirements Editor, select the requirement you want to link.
4 In the Links section, click Add Link > Link from Selection in MATLAB Editor.

For more information, see “Create and Store Links”.

 Requirements Editor

5-3

Set Requirement Properties, Custom Attributes, or Stereotype Properties

To set the value of built-in requirement properties, custom attributes, or stereotype properties:

1 Open a requirement set.
2 In the View section, click Show Requirements.
3 Select a requirement.
4 Set the value of a property or attribute in the right pane:

• Built-in property — Under Properties, set the property to the specified value.
• Custom attribute — Under Custom Attributes, set the custom attribute to the specified

value.
• Stereotype property — Under Stereotype Attributes, set the stereotype property to the
specified value.

Set Link Properties, Custom Attributes, or Stereotype Properties

To set the value of built-in link properties, custom attributes, or stereotype properties:

1 Open a requirement set.
2 In the View section, click Show Links.
3 Select a link.
4 Set the value of a property or attribute in the right pane:

• Built-in property — Under Properties, set the property to the specified value.
• Custom attribute — Under Custom Attributes, set the custom attribute to the specified

value.
• Stereotype property — Under Stereotype Attributes, set the stereotype property to the
specified value.

Search Displayed Requirements

By default, the Requirements Editor displays loaded requirements in alphabetical order. To reduce
the number of requirements displayed, search displayed requirements.

1 Open a requirement set.
2 In the View section, click Show Requirements.
3 In the Edit section, click Search.

When you perform a search:

• A requirement set is not visible if none of the requirements in the set pass the filter. If a child
requirement passes the filter, the parent requirement set is also visible.

• The filter is not case-sensitive. For example, typing A displays the requirements whose columns
contain an uppercase or lowercase A.

5 Requirements Toolbox Tools and Apps

5-4

• The filter applies to the columns in the editor. If you add columns, the filter automatically applies
to them.

Search Displayed Links

By default, the Requirements Editor displays links to loaded requirement sets, in alphabetical
order. To reduce the number of links displayed, search displayed links.

1 Open a requirement set.
2 In the View section, click Show Links.
3 In the Edit section, click Search.

Display Additional Columns

To display additional columns in the left pane:

1 Decide if you want to view requirement or link sets. To view requirement sets, in the View
section, click Show Requirements. To view link sets, in the View section, click Show Links.

2
In the View section, click the Columns button .

If you selected Show Requirements, you can select from these options:

• Implementation Status: Displays the implementation status summaries for your requirement
sets. For more information, see “Review Requirements Implementation Status”.

• Verification Status: Displays the verification status summaries for your requirement sets. For
more information, see “Review Requirements Verification Status”.

• Select Attributes: Select additional attributes to display. You can display the Index, ID,
Summary,Type, Keywords, SID, CreatedOn, CreatedBy, ModifiedOn, SyncronizedOn,
ModifiedBy, Revision, Verified, Implemented, Description, Rationale. The default attributes
are Index, ID, and Summary.

If you selected Show Links, you can only click Select Attributes. You can then select the following
attributes: Label, Source, Type,Destination, Keywords, SID, CreatedOn, CreatedBy,
ModifiedOn, ModifiedBy, Revision, Description, and Rationale. The default attributes are Label,
Source, Type, and Destination.

Once you display the attributes, you can filter them with the Search feature.

Import Requirements in Other Formats

To import requirements from a third-party requirements application:

1 In the File section, click Import to open the Import Requirements window.
2 In the Document Type property, select the file format. You can select Microsoft Word, Microsoft

Excel, ReqIF File, and IBM DOORS Next.
3 In the Document Location property, select the location of the file.

 Requirements Editor

5-5

4 Set the import options. Each format has different import options.

If you import the requirements, Requirements Toolbox creates an slreq.Requirement object for
each requirement. If you import the requirements as referenced requirements, Requirements Toolbox
creates an slreq.Reference object for each requirement. For more information, see “Import
Requirements from Third-Party Applications”.

Create Report from Requirements Information

To create a report for one or more requirement sets:

1 In the Share section, click Export > Generate Report. The Report Generation Options window
opens.

2 Set the file name and location of the report by clicking the Select button.
3 Select the report content options.
4 Select the requirement sets to include in the report. The Included Requirement Sets section

displays the loaded requirement sets. To add a requirement set, open the requirement set using
the Requirements Editor.

5 Click Generate Report.

For more information, see “Report Requirements Information”.

Open the Traceability Matrix Window

To access the Traceability Matrix window:

In the Analyze section, click Traceability Matrix. You can then create a traceability matrix in the
window. For more information, see “Track Requirement Links with a Traceability Matrix”.

Create a Traceability Diagram

To create a traceability diagram:

1 Click a requirement set.
2 In the Analyze section, click Traceability Diagram.

For more information, see “Visualize Links with a Traceability Diagram”.

Open the model testing dashboard

If you have a license for Simulink Check™, you can also open the model testing dashboard. To open
the model testing dashboard:

5 Requirements Toolbox Tools and Apps

5-6

In the Analyze section, click Model Testing Dashboard. For more information, see “Assess
Requirements-Based Testing Quality by Using the Model Testing Dashboard” (Simulink Check) and
“Explore Status and Quality of Testing Activities Using Model Testing Dashboard” (Simulink Check).

Parameters
View

Show Requirements — Show requirements and requirement sets
on (default) | off

Show the loaded requirements and requirement sets. To enable this parameter, in the View section,
click Show Requirements.You can enable this parameter or the Show Links parameter.

Show Links — Show requirements links
off (default) | on

Show the loaded links and link sets. To enable this parameter, in the View section, click Show Links.
You can enable this parameter or the Show Requirements parameter.

Columns — Select displayed columns in requirement and link sets
Select Attributes

Select attributes and information to display when viewing loaded requirement and link sets. In the

View section, click the Columns button . Once you display the attributes, you can filter them with
the Search feature.

Information — Select displayed information for selected requirements
Change Information | Comments | Code Traceability

Select information you want to display in individual requirements. To access this parameter, in the

View section, click the Information button . You can then select the following information types:

• Change Information: Indicates changes to requirements. For more information, see “Track
Changes to Requirement Links”.

• Comments: Adds the comment section in the right pane of selected requirements.
• Code Traceability: Displays code traceability information of requirements. For more information,

see “Requirements Traceability for MATLAB Code”.

The default information types displayed are Change Information and Comments.

Tips
• You can use the Requirements Manager to edit and link requirements without leaving the

Simulink model. Open the Requirements Manager app in a Simulink model by navigating to the
Apps tab and, under Model Verification, Validation, and Test, clicking Requirements
Manager.

Version History
Introduced in R2017b

 Requirements Editor

5-7

See Also
Functions
slreq.ReqSet | slreq.Link | slreq.LinkSet | slreq.clear | slreq.import | slreq.load |
slreq.new | slreq.open

Topics
“Work with Requirements in the Requirements Editor”
“Access Frequently Used Features and Commands from the Requirements Editor”
“Assess Allocation and Impact”
“Define Custom Requirement and Link Types by Using sl_customization Files”

5 Requirements Toolbox Tools and Apps

5-8

Profile Editor
Create and manage profiles with stereotypes and properties

Description
The Profile Editor allows you to define a profile that contains stereotypes with properties. In System
Composer architecture models, stereotyping is necessary to define custom metadata on model
elements typed by the stereotype. In Requirements Toolbox, you can use stereotypes to define custom
requirement types and link types with custom properties.

• System Composer: Apply a profile to your model or interface data dictionary. Then, use
stereotypes in the model to type model elements such as components, connectors, ports,
interfaces, functions, requirement sets, and link sets. Functions only apply to software
architectures. You can define custom property values on each element using the stereotyped
template.

• Requirements Toolbox: Apply a profile to a requirement set or link set. Then use stereotypes by
setting the requirement type or link type to the stereotype and setting the stereotype properties to
your desired values.

 Profile Editor

5-9

Open the Profile Editor
System Composer

• System Composer toolstrip: In the Modeling tab, click Profile Editor.
• MATLAB Command Window: Enter systemcomposer.profile.editor.

Requirements Toolbox

•
Requirements Editor toolstrip: Click Profile Editor .

Examples
• “Customize Requirements and Links by Using Stereotypes”
• “Define Stereotypes and Perform Analysis” (System Composer)
• “Define Profiles and Stereotypes” (System Composer)
• “Use Stereotypes and Profiles” (System Composer)
• “Apply Stereotypes to Functions of Software Architectures” (System Composer)

Parameters
Filter profiles — Filter to show imported profiles
<all> (default) | model file name | dictionary file name | <refresh>

Filter imported profiles:

• <all> to show all imported profiles from all loaded models and dictionaries.
• A model name, such as model.slx, to show all imported profiles from specified architecture

model.
• An interface data dictionary, such as dictionary.sldd, to show all imported profiles from
specified interface data dictionary.

• <refresh> to refresh profiles from all loaded models and dictionaries.

Import into — Import selected profile
model file name | dictionary file name

Specify the name of a model or interface data dictionary to which to import the selected profile.

Stereotype applied to root on import — Root stereotype
<none> (default) | stereotype

Stereotype to apply to the root architecture after importing profile into a model. Choose from a list of
available stereotypes. The root architecture is at the system boundary of the top-level model that
separates the contents of the model from the environment.

Applies to — Element type to which stereotype can be applied
<all> (default) | Component | Port | Connector | Interface | Function | Requirement | Link

Element type to which the stereotype can be applied.

5 Requirements Toolbox Tools and Apps

5-10

Base stereotype — Stereotype from which stereotype inherits properties
<none> (default) | stereotype

Stereotype from which the stereotype inherits properties. Choose from a list of available stereotypes.

Abstract stereotype — Whether stereotype is abstract
off (default) | on

Select this check box to indicate an abstract stereotype. An abstract stereotype is a stereotype that is
not intended to be applied directly to a model element. You can use abstract stereotypes only as the
base stereotype for other stereotypes.

Show inherited properties — Whether to show properties inherited from base
stereotype
off (default) | on

Select this check box to indicate whether to display read-only properties inherited from a base
stereotype.

More About
Interface Data Dictionary

An interface data dictionary is a consolidated list of all the interfaces and value types in an
architecture and where they are used.

Local interfaces on a System Composer model can be saved in an interface data dictionary using the
Interface Editor. You can reuse interface dictionaries between models that need to use a given set
of interfaces, elements, and value types. Linked data dictionaries are stored in separate SLDD files.

System Composer interface data dictionaries require a System Composer license.

Profile

A profile is a package of stereotypes that you can use to create a self-consistent domain of element
types.

Author profiles and apply profiles to a model using the Profile Editor. You can store stereotypes for a
project in one or several profiles. When you save profiles, they are stored in XML files.

Stereotype

A stereotype is a custom extension of the modeling language. Stereotypes provide a mechanism to
extend the architecture language elements by adding domain-specific metadata.

Apply stereotypes to model elements such as root-level architecture, component architecture,
connectors, ports, data interfaces, value types, functions, requirements, and links. Functions only
apply to software architectures. You must have a Requirements Toolbox license to apply stereotypes
to requirements and links. A model element can have multiple stereotypes. Stereotypes provide
model elements with a common set of property fields, such as mass, cost, and power.

Property

A property is a field in a stereotype. You can specify property values for each element to which the
stereotype is applied.

 Profile Editor

5-11

Use properties to store quantitative characteristics, such as weight or speed, that are associated with
a model element. Properties can also be descriptive or represent a status. You can view and edit the
properties of each element in the architecture model using the Property Inspector.

Component

A component is a nontrivial, nearly independent, and replaceable part of a system that fulfills a clear
function in the context of an architecture. A component defines an architectural element, such as a
function, a system, hardware, software, or other conceptual entity. A component can also be a
subsystem or subfunction.

Represented as a block, a component is a part of an architecture model that can be separated into
reusable artifacts. Transfer information between components with:

• Port interfaces using the Interface Editor
• Parameters using the Parameter Editor

System Composer components require a System Composer license.

Port

A port is a node on a component or architecture that represents a point of interaction with its
environment. A port permits the flow of information to and from other components or systems.

There are different types of ports:

• Component ports are interaction points on the component to other components.
• Architecture ports are ports on the boundary of the system, whether the boundary is within a

component or the overall architecture model.

System Composer ports require a System Composer license.

Connector

Connectors are lines that provide connections between ports. Connectors describe how information
flows between components or architectures.

A connector allows two components to interact without defining the nature of the interaction. Set an
interface on a port to define how the components interact.

System Composer connectors require a System Composer license.

Data Interface

A data interface defines the kind of information that flows through a port. The same interface can be
assigned to multiple ports. A data interface can be composite, meaning that it can include data
elements that describe the properties of an interface signal.

Data interfaces represent the information that is shared through a connector and enters or exits a
component through a port. Use the Interface Editor to create and manage data interfaces and data
elements and store them in an interface data dictionary for reuse between models.

System Composer data interfaces require a System Composer license.

5 Requirements Toolbox Tools and Apps

5-12

Physical Interface

A physical interface defines the kind of information that flows through a physical port. The same
interface can be assigned to multiple ports. A physical interface is a composite interface equivalent to
a Simulink.ConnectionBus object that specifies any number of Simulink.ConnectionElement
objects.

Use a physical interface to bundle physical elements to describe a physical model using at least one
physical domain.

System Composer physical interfaces require a System Composer license.

Service Interface

A service interface defines the functional interface between client and server components. Each
service interface consists of one or more function elements.

Once you have defined a service interface in the Interface Editor, you can assign it to client and
server ports using the Property Inspector. You can also use the Property Inspector to assign
stereotypes to service interfaces.

System Composer service interfaces require a System Composer license.

Requirements

Requirements are a collection of statements describing the desired behavior and characteristics of a
system. Requirements ensure system design integrity and are achievable, verifiable, unambiguous,
and consistent with each other. Each level of design should have appropriate requirements.

Requirement Link

A link is an object that relates two model-based design elements. A requirement link is a link where
the destination is a requirement. You can link requirements to components or ports.

Requirement Set

A requirement set is a collection of requirements. You can structure the requirements hierarchically
and link them to components or ports.

Version History
Introduced in R2019a

See Also
Apps
Requirements Editor

Tools
Profile Editor

Functions
systemcomposer.profile.editor

 Profile Editor

5-13

Topics
“Customize Requirements and Links by Using Stereotypes”
“Define Stereotypes and Perform Analysis” (System Composer)
“Define Profiles and Stereotypes” (System Composer)
“Use Stereotypes and Profiles” (System Composer)
“Apply Stereotypes to Functions of Software Architectures” (System Composer)

5 Requirements Toolbox Tools and Apps

5-14

Operators

6

contains
Determine if string contains substring

Syntax
tf = contains(str,substr)
tf = contains(str,substr,IgnoreCase=true)

Description
tf = contains(str,substr) returns 1 (true) if the string str contains the substring substr,
and returns 0 (false) otherwise. Use this operator in the Requirements Table block.

tf = contains(str,substr,IgnoreCase=true) checks if str contains substr, ignoring any
differences in letter case.

Examples

Determine if String Contains Substring

In a Requirements Table block, create a requirement that outputs whether the string "Hello,
world!" contains the substring "Hello".

y = contains("Hello, world!","Hello")

Determine if String Contains Substring While Ignoring Case

In a Requirements Table block, create a requirement that outputs whether the string "Hello,
world!" contains the substring "Hello", regardless of case.

y = contains("Hello, world!","hello",IgnoreCase=true)

6 Operators

6-2

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
startsWith | endsWith | strfind

 contains

6-3

duration
Time during which condition is valid

Syntax
time = duration(condition)

Description
time = duration(condition) returns the length of time, in seconds, that condition stays
true. Use this operator in the Requirements Table block.

Examples

Guard Transition with Temporal Condition

Transition out of the state when the variable x has been greater than or equal to 0 for longer than 0.1
seconds.

[duration(x>=0) > 0.1]

Determine Elapsed Time

Store the number of milliseconds since the variable x became greater than 5 and the state became
active.

en,du:
 y = duration(x>5,msec);

Compare Duration Length to Input Data

Set a equal to 1 when the time that the input data u is greater than or equal to 0 exceeds the value of
y. Otherwise, the block sets a equal to 0.

6 Operators

6-4

Input Arguments
condition — Logical condition
true | false

Logical condition, specified as true or false. You can specify the value of condition by using an
expression that evaluates to true or false. The operator evaluates condition at each time step.

condition does not support expressions that depend on local or output data.
Example: duration(u)
Example: duration(u>=0)
Data Types: logical

time_unit — Units of time
sec (default) | msec | usec

Units of time that duration returns, specified in seconds (sec), milliseconds (msec), or
microseconds (usec).
Data Types: enumerated

Output Arguments
time — Length of time
scalar double

Length of time, in seconds, that condition stays true, returned as a scalar double.

Tips
• The Requirements Table block resets the output of the duration operator if condition becomes

false or if the block becomes inactive.

See Also
Requirements Table | isStartup | getPrevious | t

Topics
“Use a Requirements Table Block to Create Formal Requirements”
“Control Requirement Execution by Using Temporal Logic”

 duration

6-5

endsWith
Determine if string ends with substring

Syntax
tf = endsWith(str,substr)
tf = endsWith(str,substr,IgnoreCase=true)

Description
tf = endsWith(str,substr) returns 1 (true) if the string str ends with the substring substr,
and returns 0 (false) otherwise. Use this operator in the Requirements Table block.

tf = endsWith(str,substr,IgnoreCase=true) checks if str ends with substr, ignoring any
differences in letter case.

Examples

Determine if String Ends with Substring

In a Requirements Table block, create a requirement that checks if the string "Hello, world!"
ends with the substring "world!".

y = endsWith("Hello, world!","world!")

Determine if String Ends with Substring While Ignoring Case

In a Requirements Table block, create a requirement that checks if the string "Hello, world!"
ends with the substring "World!", regardless of case.

y = endsWith("Hello, world!","world!",IgnoreCase=true)

6 Operators

6-6

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
contains | startsWith | strfind

 endsWith

6-7

erase
Delete substrings within strings

Syntax
newStr = erase(str,substr)

Description
newStr = erase(str,substr) deletes instances of the substring substr that occur in the string
str. Use this operator in the Requirements Table block.

Examples

Replace a Substring

In a Requirements Table block, create a requirement that erases the substring ", world" from the
string "Hello, world!".

y = erase("Hello, world!",", world")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

6 Operators

6-8

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
eraseBetween

 erase

6-9

eraseBetween
Delete substring between start and end points

Syntax
newStr = eraseBetween(str,startStr,endStr)
newStr = eraseBetween(str,startPos,endPos)
newStr = eraseBetween(___ ,Boundaries=bounds)

Description
newStr = eraseBetween(str,startStr,endStr) deletes the substring in str between the
substrings startStr and endStr. eraseBetween does not delete startStr and endStr
themselves.

newStr = eraseBetween(str,startPos,endPos) deletes the substring in str between the
character positions startPos and endPos, including the characters at those positions.

newStr = eraseBetween(___ ,Boundaries=bounds) includes or excludes the boundaries
specified in the previous syntaxes from the substring that the operator deletes. Specify bounds as
"inclusive" or "exclusive".

Examples

Erase Text Between Two Substrings

In a Requirements Table block, create a requirement that erases the characters between "H" and
"!" in the string "Hello, world!". The output is "Hello!".

y = eraseBetween("Hello, world!","Hello","!")

Erase Text Between Start and End Positions

In a Requirements Table block, create a requirement that erases the characters between the sixth
and twelfth characters of the string "Hello, world!". The output is "Hello!".

y = eraseBetween("Hello, world!",6,12)

6 Operators

6-10

Erase Text with Inclusive Bounds

In a Requirements Table block, create a requirement that erases the characters between the sixth
and twelfth characters of the string "Hello, world!", including the bounds. The output is
"Hello!".

y = eraseBetween("Hello, world!",6,12,Boundaries="inclusive")

Erase Text with Exclusive Bounds

In a Requirements Table block, create a requirement that erases the characters between the sixth
and twelfth characters of the string "Hello, world!", excluding the bounds. The output is
"Hello,d!".

y = eraseBetween("Hello, world!",6,12,Boundaries="exclusive")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

 eraseBetween

6-11

Data Types: string

startStr — Starting substring
string scalar

Staring substring, specified as a string scalar. Enclose literal strings with double quotes.
Data Types: string

endStr — Ending substring
string scalar

Ending substring, specified as a string scalar. Enclose literal strings with double quotes.
Data Types: string

startPos — Starting character position
positive integer

Starting character position, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

endPos — Ending character position
positive integer

Ending character position, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

bounds — Boundary type
"inclusive" | "exclusive"

Boundary type, specified as either "inclusive" or "exclusive". When you set bounds to
"inclusive", replaceBetween erases the text between and including the boundaries. When you
set bounds to "inclusive", replaceBetween erases the text only between the boundaries.
Data Types: enumerated

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

6 Operators

6-12

See Also
erase | replaceBetween

 eraseBetween

6-13

extractAfter
Extract substring after position

Syntax
newStr = extractAfter(str,subStr)
newStr = extractAfter(str,pos)

Description
newStr = extractAfter(str,subStr) returns the substring of str that begins after the last
occurrence of the substring subStr.

newStr = extractAfter(str,pos) returns the substring of str that begins after the character
position pos.

Examples

Extract Text After Substring

In a Requirements Table block, create a requirement that returns the characters in the string
"Hello, world!" after the substring "Hello, ". The output is "world!".

y = extractAfter("Hello, world!","Hello, ")

Extract Text After a Position

In a Requirements Table block, create a requirement that returns the substring after the seventh
character of the string "Hello, world!". The output is "world!".

y = extractAfter("Hello, world!",7)

6 Operators

6-14

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

pos — Character position
positive integer

Character position, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

 extractAfter

6-15

See Also
extractBefore | insertAfter

6 Operators

6-16

extractBefore
Extract substring before position

Syntax
newStr = extractBefore(str,subStr)
newStr = extractBefore(str,pos)

Description
newStr = extractBefore(str,subStr) returns the substring of str that ends before the first
occurrence of the substring subStr.

newStr = extractBefore(str,pos) returns the substring of str that ends before the character
position pos.

Examples

Extract Text Before Substring

In a Requirements Table block, create a requirement that extracts the characters in the string
"Hello, world!" before the substring ",". The output is "Hello".

y = extractBefore("Hello, world!",",")

Extract Text Before a Position

In a Requirements Table block, create a requirement that extracts the characters in the string
"Hello, world!" before the sixth character. The output is "Hello".

y = extractBefore("Hello, world!",6)

 extractBefore

6-17

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

pos — Character position
positive integer

Character position, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

6 Operators

6-18

See Also
extractAfter | insertBefore

 extractBefore

6-19

getPrevious, prev
Previous value of data

Syntax
z = getPrevious(u)
z = prev(u)

Description
z = getPrevious(u) returns the value of the data at the previous time step. This operator works
only in the Requirements Table block.

z = prev(u) is an alternative way to execute getPrevious(u).

Input Arguments
u — Data
block data

Data, specified as data defined in the Requirements Table block. See “Define Data in Requirements
Table Blocks”. u must be specified as input or output data.

Output Arguments
z — Value at previous time step
any data type, depending on the input

Value at the previous time step, returned as a value with the same data type of u.

Examples

Check Previous Data Values

At the start time, set y equal to 0. After the start time, recall the value of the input data u in the
precondition at the previous time step. One requirement checks if the previous value of u is greater
than or equal to the current value, and another checks if the previous value is less than the current
value. The block assigns different values for the output data y.

6 Operators

6-20

Tips
• If getPrevious attempts to return the value of the data at a time step when it was not defined, it

returns an undefined value. For example, data is not defined before the simulation time is 0. For
this situation, use the isStartup operator to define additional requirements at a simulation time
of 0 and ~isStartup at the other time steps.

• You can use this operator only in the Requirements tab.

Version History
Introduced in R2022a

See Also
Requirements Table | duration | isStartup | t

Topics
“Use a Requirements Table Block to Create Formal Requirements”
“Control Requirement Execution by Using Temporal Logic”

 getPrevious, prev

6-21

hasChanged
Detect change in data since last time step

Syntax
tf = hasChanged(data)

Description
tf = hasChanged(data) returns 1 (true) if the value of data at the beginning of the current time
step is different from the value of data at the beginning of the previous time step. Otherwise, the
operator returns 0 (false). Use this operator in the Requirements Table block.

Examples

Detect Change in Input Data

Set the output data a to 1 if the input data M has changed since the last time step. Otherwise, set a to
0.

Detect Change in Matrix Element

Set the output data a to 1 if the element in row 1 and column 3 of input data M has changed since the
last time step. Otherwise, set a to 0.

6 Operators

6-22

Detect Change in Structure

Set the output data a to 1 if one of the fields of the structure struct has changed value since the last
time step. Otherwise, set a to 0.

Detect Change in Structure Field

Set the output data a to 1 if the field struct.field has changed value since the last time step.
Otherwise, set a to 0.

Input Arguments
data — Data
scalar | matrix | structure | ...

Data defined in the Requirements Table block, specified as a:

 hasChanged

6-23

• Scalar
• Matrix or an element of a matrix
• Structure or a field in a structure
• Valid combination of structure fields or matrix elements

See “Define Data in Requirements Table Blocks”.

If data is a matrix, the operator returns true when it detects a change in one of the elements of
data. You can also index elements of a matrix by using numbers or expressions that evaluate to an
integer.

If data is a structure, the operator returns true when it detects a change in one of the fields of
data. You can also index fields in a structure by using dot notation.

The argument data cannot be a nontrivial expression or a custom code variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | string | fi | enumerated | bus

Tips
• If the Requirements Table block writes to the specified data but does not change the value, the

hasChanged operator returns false.

Version History
Introduced in R2022a

See Also
Requirements Table | hasChangedFrom | hasChangedTo

Topics
“Use a Requirements Table Block to Create Formal Requirements”
“Detect Data Changes by Using Requirements Table Blocks”

6 Operators

6-24

hasChangedFrom
Detect change in data from specified value

Syntax
tf = hasChangedFrom(data,value)

Description
tf = hasChangedFrom(data,value) returns 1 (true) if the value of data is equal to value at
the beginning of the previous time step and is a different value at the beginning of the current time
step. Otherwise, the operator returns 0 (false). Use this operator in the Requirements Table block.

Examples

Detect Change in Input Data

Set the output data a to 1 if the input data M has changed from 1 since the last time step. Otherwise,
set a to 0.

Detect Change in Matrix Element

Set the output data a to 1 if the element in row 1 and column 3 of input data M has changed from 1
since the last time step. Otherwise, set a to 0.

 hasChangedFrom

6-25

Detect Change in Structure

Set the output data a to 1 if one of the fields of the structure struct has changed from the value of
structValue since the last time step. Otherwise, set a to 0.

Detect Change in Structure Field

Set the output data a to 1 if the field struct.field has changed from the value of 1 since the last
time step. Otherwise, set a to 0.

Input Arguments
data — Data
scalar | matrix | structure | ...

Data defined in the Requirements Table block, specified as a:

6 Operators

6-26

• Scalar
• Matrix or an element of a matrix
• Structure or a field in a structure
• Valid combination of structure fields or matrix elements

See “Define Data in Requirements Table Blocks”.

If data is a matrix, the operator returns true when it detects a change in one of the elements of
data. You can also index elements of a matrix by using numbers or expressions that evaluate to a
integer.

If data is a structure, the operator returns true when it detects a change in one of the fields of
data. You can also index fields in a structure by using dot notation.

The argument data cannot be a nontrivial expression or a custom code variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | string | fi | enumerated | bus

value — Value of data at previous time step
scalar | matrix | structure

Value of the data at previous time step, specified as the same data type of data. value must be an
expression that resolves to a value that is comparable with data:

• If data is a scalar, then value must resolve to a scalar.
• If data is a matrix, then value must resolve to a matrix with the same dimensions as data.
• If data is a structure, then value must resolve to a structure whose field specification matches

data exactly.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | string | fi | enumerated | bus

Tips
• If the Requirements Table block writes to the specified data but does not change the value, the

hasChangedFrom operator returns false.

Version History
Introduced in R2022a

See Also
Requirements Table | hasChanged | hasChangedTo

Topics
“Use a Requirements Table Block to Create Formal Requirements”
“Detect Data Changes by Using Requirements Table Blocks”

 hasChangedFrom

6-27

hasChangedTo
Detect change in data to specified value

Syntax
tf = hasChangedTo(data,value)

Description
tf = hasChangedTo(data,value) returns 1 (true) if the value of data is not equal to value at
the beginning of the previous time step and is equal to value at the beginning of the current time
step. Otherwise, the operator returns 0 (false). Use this operator in the Requirements Table block.

Examples

Detect Change in Input Data

Set the output data a to 1 if the input data M has changed to 1 since the last time step. Otherwise, set
a to 0.

Detect Change in Matrix Element

Set the output data a to 1 if the element in row 1 and column 3 of input data M has changed to 1 since
the last time step. Otherwise, set a to 0.

6 Operators

6-28

Detect Change in Structure

Set the output data a to 1 if one of the fields of the structure struct has changed value since the last
time step and the current value of struct is equal to structValue. Otherwise, set a to 0.

Detect Change in Structure Field

Set the output data a to 1 if the field struct.field has changed to the value 1 since the last time
step. Otherwise, set a to 0.

Input Arguments
data — Data
scalar | matrix | structure | ...

Data defined in the Requirements Table block, specified as a:

 hasChangedTo

6-29

• Scalar
• Matrix or an element of a matrix
• Structure or a field in a structure
• Valid combination of structure fields or matrix elements

See “Define Data in Requirements Table Blocks”.

If data is a matrix, the operator returns true when it detects a change in one of the elements of
data. You can also index elements of a matrix by using numbers or expressions that evaluate to a
integer.

If data is a structure, the operator returns true when it detects a change in one of the fields of
data. You can also index fields in a structure by using dot notation.

The argument data cannot be a nontrivial expression or a custom code variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | string | fi | enumerated | bus

value — Value of data at current time step
scalar | matrix | structure

Value of the data at the current time step, specified as the same data type of data. value must be an
expression that resolves to a value that is comparable with data:

• If data is a scalar, then value must resolve to a scalar.
• If data is a matrix, then value must resolve to a matrix with the same dimensions as data.
• If data is a structure, then value must resolve to a structure whose field specification matches

data exactly.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | string | fi | enumerated | bus

Tips
• If the Requirements Table block writes to the specified data but does not change the value, the

hasChangedTo operator returns false.

Version History
Introduced in R2022a

See Also
Requirements Table | hasChanged | hasChangedFrom

Topics
“Use a Requirements Table Block to Create Formal Requirements”
“Detect Data Changes by Using Requirements Table Blocks”

6 Operators

6-30

insertAfter
Insert string after substring

Syntax
newStr = insertAfter(str,subStr,new)
newStr = insertAfter(str,pos,new)

Description
newStr = insertAfter(str,subStr,new) inserts the string new into the string str after the
substring subStr. insertAfter inserts new after every occurrence of subStr. Use this operator in
the Requirements Table block.

newStr = insertAfter(str,pos,new) inserts new into str after the character position pos.

Examples

Insert Text After Substring

In a Requirements Table block, create a requirement that inserts the substring " there" after the
substring "Hello," in the string "Hello, world!". The output is "Hello there, world!".

y = insertAfter("Hello, world!","Hello"," there")

Insert Text After Character Position

In a Requirements Table block, create a requirement that inserts the substring " there" after the
fifth character of the string "Hello, world!". The output is "Hello there, world!".

y = insertAfter("Hello, world!",5," there")

 insertAfter

6-31

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

pos — Character position
positive integer

Character position, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

new — New substring
string scalar

New substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

6 Operators

6-32

Version History
Introduced in R2022b

See Also
insertBefore | extractAfter

 insertAfter

6-33

insertBefore
Insert string before substring

Syntax
newStr = insertBefore(str,subStr,new)
newStr = insertBefore(str,pos,new)

Description
newStr = insertBefore(str,subStr,new) inserts the string new into the string str before the
substring subStr. insertAfter inserts new before every occurrence of subStr. Use this operator
in the Requirements Table block.

newStr = insertBefore(str,pos,new) inserts new into str before the character position pos.

Examples

Insert Text Before Substring

In a Requirements Table block, create a requirement that inserts the substring " there" before the
substring "," in the string "Hello, world!". The output is "Hello there, world!".

y = insertBefore("Hello, world!",","," there")

Insert Text Before Character Position

In a Requirements Table block, create a requirement that inserts the substring " there" before the
sixth character of the string "Hello, world!". The output is "Hello there, world!".

y = insertBefore("Hello, world!",6," there")

6 Operators

6-34

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

pos — Character position
positive integer

Character position, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

new — New substring
string scalar

New substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

 insertBefore

6-35

Version History
Introduced in R2022b

See Also
insertAfter | extractBefore

6 Operators

6-36

isletter
Determine which characters are letters

Syntax
tf = isletter(str)

Description
tf = isletter(str) returns a Boolean array based on whether each character of str is a letter or
not. Use this operator in the Requirements Table block.

Examples

Determine Which Characters of a String Are Letters

In a Requirements Table block, create a requirement that outputs a logical array that indicates which
characters in the string "Hello, world!" are letters.

y = isletter("Hello, world!")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Output Arguments
tf — Whether each character is a letter
logical array

Whether each character is a letter, specified as a logical array. The elements in tf are logical 1 where
the corresponding characters in str are letters, and logical 0 where the characters are not letters.

 isletter

6-37

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
isspace | isstring

6 Operators

6-38

isspace
Determine which characters are spaces

Syntax
tf = isspace(str)

Description
tf = isspace(str) returns a Boolean array based on whether each character of str is a space or
not. Use this operator in the Requirements Table block.

Examples

Determine Which Characters of a String Are Spaces

In a Requirements Table block, create a requirement that outputs a logical array determined by the
string "Hello, world!".

y = isspace("Hello, world!")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Output Arguments
tf — Whether each character is a space
logical array

 isspace

6-39

Whether each character is a space, specified as a logical array. The elements in tf are logical 1
where the corresponding characters in str are spaces, and logical 0 where the characters are not
spaces.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
isletter | isstring

6 Operators

6-40

isStartup
Whether simulation time is 0

Syntax
isStartup
isStartup()

Description
isStartup returns true if the simulation time equals 0 and returns false at all other simulation
times. You can use this operator only in the Requirements Table block.

isStartup() is an alternative way to execute isStartup.

Examples

Change Requirement Evaluation Due to Start Time

Use isStartup to check when the block input data y is greater than or equal to 0 when the
simulation time equals 0, and check that y is less than or equal to 0 at other times. The second
requirement checks the logical opposite of isStartup with the ~ operator.

Tips
• Because isStartup returns a Boolean value, you can use it as the only entry in a requirement

precondition of the Requirements Table block.
• You can use isStartup with getPrevious to specify time-dependent requirement execution.

Version History
Introduced in R2022a

See Also
Requirements Table | duration | getPrevious | t

 isStartup

6-41

Topics
“Use a Requirements Table Block to Create Formal Requirements”
“Control Requirement Execution by Using Temporal Logic”
“Establish Hierarchy in Requirements Table Blocks”

6 Operators

6-42

isstring
Determine if input is string

Syntax
tf = isstring(X)

Description
tf = isstring(X) returns 1 (true) if X is a string. Otherwise, it returns 0 (false). Use this
operator in the Requirements Table block.

Examples

Check Whether an Input Argument is a String Array

In a Requirements Table block, create two requirements that output if the string "Hello, world!"
and the value 9 are strings.

y1 = isstring("Hello, world!")
y2 = isstring(9)

Input Arguments
X — Input value
scalar | vector | matrix | multidimensional array

Input value, specified as a scalar, vector, matrix, or multidimensional array. X can be any data type. If
X is a string, it must be a string scalar.

Version History
Introduced in R2022b

 isstring

6-43

See Also
isletter | isspace

6 Operators

6-44

lower
Convert string to lowercase

Syntax
newStr = lower(str)

Description
newStr = lower(str) converts the uppercase characters in the string str to the corresponding
lowercase characters. Use this operator in the Requirements Table block.

Examples

Convert String to Lowercase

In a Requirements Table block, create a requirement that converts the uppercase characters in the
string "Hello, world!" to lowercase characters. The output is "hello, world!".

y = lower("Hello, world!")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

 lower

6-45

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
upper | reverse

6 Operators

6-46

matches
Determine if two strings match

Syntax
tf = matches(str1,str2)
tf = matches(str1,str2,IgnoreCase=true)

Description
tf = matches(str1,str2) compares the strings str1 and str2. The operator returns 1 (true) if
the strings are identical, and returns 0 (false) otherwise. Use this operator in the Requirements
Table block.

tf = matches(str1,str2,IgnoreCase=true) compares strings str1 and str2, ignoring any
differences in letter case.

Examples

Compare Strings

In a Requirements Table block, create a requirement that checks if the string "Hello, world!"
matches the string "Hello, world!".

y = matches("Hello, world!","Hello, world!")

Compare Strings While Ignoring Case

In a Requirements Table block, create a requirement that checks if the string "Hello, world!"
matches the string "hello, World!" regardless of case.

y = matches("Hello, world!","hello, World!",IgnoreCase=true)

 matches

6-47

Input Arguments
str1, str2 — Input strings
string scalar

Input strings, specified as string scalars. Enclose literal string with double quotes.
Example: "Hello"
Data Types: string

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
strcmp | strcmpi | strncmp | strncmpi

6 Operators

6-48

plus, +
Concatenate strings

Syntax
newStr = plus(str1,str2)
newStr = str1 + str2

Description
newStr = plus(str1,str2) concatenates the strings str1 and str2. Use this operator in the
Requirements Table block.

newStr = str1 + str2 is an alternative way to execute newStr = plus(str1,str2).

Examples

Concatenate Strings

In a Requirements Table block, create a requirement that concatenates the string "Hello," with the
string " world!". The output is "Hello, world!".

y = plus("Hello,"," world!")

Alternatively, you can use + to concatenate two strings.

y = "Hello," + " world!"

 plus, +

6-49

Input Arguments
str1, str2 — Input strings
string scalar

Input strings, specified as string scalars. Enclose literal string with double quotes.
Example: "Hello"
Data Types: string

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
extractAfter | extractBefore

6 Operators

6-50

replace
Find and replace substrings

Syntax
newStr = replace(str,old,new)

Description
newStr = replace(str,old,new) replaces instances of the substring old that occur in the string
str with the string new. Use this operator in the Requirements Table block.

Examples

Replace Substring

In a Requirements Table block, create a requirement that replaces the substring "Hello" with the
substring "Howdy" in the string "Hello, world!".

y = replace("Hello, world!","Hello","Howdy")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

old — Substring to replace
string scalar

Substring to replace, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

 replace

6-51

new — New substring
string scalar

New substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Algorithms
The replace operator replaces sequential substrings. For example, replace("abc 2 def 22 ghi
222 jkl 2222","22","*") returns "abc 2 def * ghi *2 jkl **". To replace overlapping
substrings, use strrep. For more information, see “Replace Repeated Pattern”.

Version History
Introduced in R2022b

See Also
replaceBetween | strrep

6 Operators

6-52

replaceBetween
Replace substrings between start and end points

Syntax
newStr = replaceBetween(str,startStr,endStr,new)
newStr = replaceBetween(str,startPos,endPos,new)
newStr = replaceBetween(___ ,Boundaries=bounds)

Description
newStr = replaceBetween(str,startStr,endStr,new) replaces the substring in str
between the substrings startStr and endStr with the string new. replaceBetween does not
replace startStr and endStr themselves. new can have a different number of characters than the
substring it replaces. Use this operator in the Requirements Table block.

newStr = replaceBetween(str,startPos,endPos,new) replaces the substring in str
between the character positions startPos and endPos, including the characters at those positions.

newStr = replaceBetween(___ ,Boundaries=bounds) includes or excludes the boundaries
specified in the previous syntaxes from the substring that the operator replaces. Specify bounds as
"inclusive" or "exclusive".

Examples

Replace a Substring with a New Substring

In a Requirements Table block, create a requirement that replaces the characters in the string
"Hello, world!" between "H" and "," with the substring "owdy". The output is "Howdy,
world!".

y = replaceBetween("Hello, world!","H",",","owdy")

Replace a Substring Between Start and End Positions

In a Requirements Table block, create a requirement that replaces the characters between the second
and sixth characters of the string "Hello, world!" with the substring "owdy". The output is
"Howdy, world!".

 replaceBetween

6-53

y = replaceBetween("Hello, world!",2,6,"owdy")

Replace a Substring and Specify Inclusive Bounds

In a Requirements Table block, create a requirement that replaces the characters in the string
"Hello, world!" between "H" and "o" with the substring "Howdy", including the bounds. The
output is "Howdy, world!".
y = replaceBetween("Hello, world!","H","o","Howdy",Boundaries="inclusive")

Replace a Substring and Specify Exclusive Bounds

In a Requirements Table block, create a requirement that replaces the characters in the string
"Hello, world!" between "H" and "o" with the substring "Howdy", excluding the bounds. The
output is "HHowdyo, world!".
y = replaceBetween("Hello, world!","H","o","Howdy",Boundaries="exclusive")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

6 Operators

6-54

startStr — Starting substring
string scalar

Staring substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

endStr — Ending substring
string scalar

Ending substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

startPos — Starting character position
positive integer

Starting character position, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

endPos — Ending character position
positive integer

Ending character position, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

new — New substring
string scalar

New substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

bounds — Boundary type
"inclusive" | "exclusive"

Boundary type, specified as "inclusive" or "exclusive". When you set bounds to "exclusive",
replaceBetween replaces only the text between the boundaries. When you set bounds to
"inclusive", replaceBetween also replaces the boundaries themselves.
Data Types: enumerated

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

 replaceBetween

6-55

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
replace | strrep | eraseBetween

6 Operators

6-56

reverse
Reverse order of characters in strings

Syntax
newStr = reverse(str)

Description
newStr = reverse(str) reverses the order of the characters in the string str. Use this operator
in the Requirements Table block.

Examples

Reverse String

In a Requirements Table block, create a requirement that reverses the order of the characters in the
string "Hello, world!". The output is "!dlrow ,olleH".

y = reverse("Hello, world!")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

 reverse

6-57

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
lower | upper

6 Operators

6-58

startsWith
Determine if string starts with substring

Syntax
tf = startsWith(str,substr)
tf = startsWith(str,substr,IgnoreCase=true)

Description
tf = startsWith(str,substr) returns 1 (true) if the string str starts with the substring
substr, and returns 0 (false) otherwise. Use this operator in the Requirements Table block.

tf = startsWith(str,substr,IgnoreCase=true) checks if str starts with substr, ignoring
any differences in letter case.

Examples

Determine If String Starts with Substring

In a Requirements Table block, create a requirement that checks if the string "Hello, world!"
starts with the substring "Hello,".

y = startsWith("Hello, world!","Hello,")

Determine If String Starts with Substring While Ignoring Case

In a Requirements Table block, create a requirement that checks if the string "Hello, world!"
starts with the substring "hello," regardless of case.

y = startsWith("Hello, world!","hello,",IgnoreCase=true)

 startsWith

6-59

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
contains | endsWith | strfind

6 Operators

6-60

str2double, double
Convert string to double-precision value

Syntax
X = str2double(str)
X = double(str)

Description
X = str2double(str) converts the text in string str to a double-precision complex value. If
str2double cannot convert the text to a number, it returns a NaN value. Use this operator in the
Requirements Table block.

X = double(str) is an alternative way to execute str2double(str).

Examples

Convert String That Contains Decimal Notation

In a Requirements Table block, convert the string "-12.345" to a double and output the value.

y = str2double("-12.345")

Convert String That Contains Exponential Notation

In a Requirements Table block, convert the string "1.234e5" to a double and output the value.

X = str2double("1.234e5")

 str2double, double

6-61

Input Arguments
str — Input value
string scalar

Input value, specified as a string scalar.

str must contain text that represents a number, including:

• Digits
• A decimal point
• A leading + or - sign
• An e preceding a power of 10 scale factor
• An imaginary part followed by an i or a j

Enclose literal string with double quotes.
Data Types: string

Output Arguments
X — Output number
double

Output number, returned as a double-precision complex scalar.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
string

6 Operators

6-62

strcmp
Compare strings (case sensitive)

Syntax
tf = strcmp(str1,str2)

Description
tf = strcmp(str1,str2) compares the strings str1 and str2. The operator returns 1 (true) if
the strings are identical, and returns 0 (false) otherwise. strcmp is case sensitive. Use this
operator in the Requirements Table block.

Examples

Compare First N Characters of Strings

In a Requirements Table block, create a requirement that checks if the strings "abc" and "abc" are
equal.

y = strcmp("abc","abc")

You can also compare and sort string with relational operators. Use == to determine two strings are
equal.

"abc" == "abc"

Use ~= to determine if two strings are not equal.

"abc" ~= "abcd"

 strcmp

6-63

Input Arguments

Version History
Introduced in R2022b

See Also
matches | strcmpi | strncmp | strncmpi

6 Operators

6-64

strcmpi
Compare strings (case insensitive)

Syntax
tf = strcmpi(str1,str2)

Description
tf = strcmpi(str1,str2) compares strings str1 and str2, ignoring differences in letter case.
The operator returns 1 (true) if the strings are identical and 0 (false) otherwise. Use this operator
in the Requirements Table block.

Examples

Compare Strings While Ignoring Case

In a Requirements Table block, create a requirement that checks if the strings "abc" and "ABC" are
equal, ignoring case.

y = strcmpi("abc","ABC")

Input Arguments
str1, str2 — Input strings
string scalar

Input strings, specified as string scalars. Enclose literal string with double quotes.
Example: "Hello"
Data Types: string

Limitations
• This operator does not support the use of Simulink.Bus object fields.

 strcmpi

6-65

Version History
Introduced in R2022b

See Also
matches | strcmp | strncmp | strncmpi

6 Operators

6-66

strfind
Find substring within a string

Syntax
k = strfind(str,substr)

Description
k = strfind(str,substr) searches the string str for occurrences of the substring substr. The
operator returns a vector that contains the starting index of each occurrence of substr in str. The
search is case-sensitive. Use this operator in the Requirements Table block.

Examples

Find Start of Substring

In a Requirements Table block, create a requirement that outputs the starting character position of
the substring "world" in the string "Hello, world!". The output is 8.

y = strfind("Hello, world!","world")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

substr — Substring
string scalar

Substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"

 strfind

6-67

Data Types: string

Output Arguments
k — Starting character position of substring
vector of doubles

Starting character position of each occurrence of subStr in str, returned as a vector of doubles that
contains the starting index of each occurrence of substr in str. If strfind does not find subStr,
then k is an empty array.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
contains | startsWith | endsWith

6 Operators

6-68

string
Convert value to string

Syntax
str = string(X)

Description
str = string(X) converts the input X to a string. Use this operator in the Requirements Table
block.

Examples

Convert Boolean Value to String

Convert Boolean value to string "true".

str = string(true);

Convert Input to a String

In a Requirements Table block, create a requirement that converts the number 3145 into a string.

y = string(3145)

 string

6-69

Input Arguments
X — Input value
scalar

Input value, specified as a scalar.

If X is a numerical data type, it must be an integer. For example, A can equal 25, but cannot equal
2.5.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | string
Complex Number Support: Yes

Output Arguments
str — Output string
string scalar

Output string, returned as a string scalar.

Version History
Introduced in R2022b

See Also
str2double

6 Operators

6-70

strip
Remove leading and trailing characters from string

Syntax
newStr = strip(str)
newStr = strip(str,side)
newStr = strip(___ ,stripCharacter)

Description
newStr = strip(str) removes consecutive whitespace characters from the beginning and end of
the string str. Use this operator in the Requirements Table block.

newStr = strip(str,side) removes consecutive white space characters from the side specified
by side.

newStr = strip(___ ,stripCharacter) strips the character specified by stripCharacter.
You can use any of the input arguments in the previous syntaxes.

Examples

Delete Leading and Trailing Spaces from String

In a Requirements Table block, create a requirement that deletes the leading and trailing space
characters in a string.

y = strip(" Hello, world! ")

Delete Leading Spaces from String

In a Requirements Table block, create a requirement that deletes only the leading space characters in
a string.

y = strip(" Hello, world! ","left")

 strip

6-71

Delete Leading Character from String

In a Requirements Table block, create a requirement that deletes leading instances of the character e
in a string.

y = strip("eeeeeeHello, world! ","left","e")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

side — Side of string to strip
"both" (default) | "left" | "right"

Side of string to strip, specified as "left", "right", or "both".
Data Types: string

stripCharacter — Character to remove
" " (default) | string scalar

Character to remove, specified as a string scalar.
Data Types: string

6 Operators

6-72

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
strtrim

 strip

6-73

strlength
Determine length of string

Syntax
l = strlength(str)

Description
l = strlength(str) returns the number of characters in the string str. Use this operator in the
Requirements Table block.

Examples

Determine Number of Characters in a String

In a Requirements Table block, create a requirement that outputs the number of characters in the
string "Hello, world!".

y = strlength("Hello, world!")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Output Arguments
L — Number of characters
double

Number of characters in str, returned as a double-precision scalar.

6 Operators

6-74

Version History
Introduced in R2022b

See Also
string | contains | strlen

 strlength

6-75

strncmp
Compare first N characters of strings (case sensitive)

Syntax
tf = strncmp(str1,str2,n)

Description
tf = strncmp(str1,str2,n) compares up to n characters of str1 and str2. The operator
returns 1 (true) if the strings are identical and 0 (false) otherwise. Use this operator in the
Requirements Table block.

Examples

Compare First N Characters of Strings

In a Requirements Table block, create a requirement that checks if the string "Hello, world!"
matches the first thirteen characters of the string "Hello, world!!!!!!!!!!!!".

y = strncmp("Hello, world!","Hello, world!!!!!!!!!!!!",13)

Input Arguments
str1, str2 — Input strings
string scalar

Input strings, specified as string scalars. Enclose literal string with double quotes.
Example: "Hello"
Data Types: string

n — Number of characters checked
positive integer

Number of characters checked, starting at the beginning of each string, specified as a positive
integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

6 Operators

6-76

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
matches | strcmp | strcmpi | strncmpi

 strncmp

6-77

strncmpi
Compare first N characters of strings (case insensitive)

Syntax
tf = strncmpi(str1,str2,n)

Description
tf = strncmpi(str1,str2,n) compares up to n characters of str1 and str2, ignoring case. The
operator returns 1 (true) if the strings are identical and 0 (false) otherwise. Use this operator in
the Requirements Table block.

Examples

Compare First N Characters While Ignoring Case

In a Requirements Table block, create a requirement that checks if the string "Hello, world!"
matches the first thirteen characters of the string "hello, World!!!!!!!!!!!!", ignoring case.

y = strncmpi("Hello, world!","hello, World!!!!!!!!!!!!",13)

Input Arguments
str1, str2 — Input strings
string scalar

Input strings, specified as string scalars. Enclose literal string with double quotes.
Example: "Hello"
Data Types: string

n — Number of characters checked
positive integer

Number of characters checked, starting at the beginning of each string, specified as a positive
integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

6 Operators

6-78

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
matches | strcmp | strcmpi | strncmp

 strncmpi

6-79

strrep
Find and replace substrings

Syntax
newStr = strrep(str,old,new)

Description
newStr = strrep(str,old,new) replaces instances of the substring old that occur in the string
str with the substring new. Use this operator in the Requirements Table block.

Examples

Replace Substring

In a Requirements Table block, create a requirement that replaces the substring "Hello" with the
substring "Howdy".

y = strrep("Hello, world!","Hello","Howdy")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

old — Substring to replace
string scalar

Substring to replace, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

6 Operators

6-80

new — New substring
string scalar

New substring, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Algorithms
The strrep operator replaces overlapping substrings. For example, strrep("abc 2 def 22 ghi
222 jkl 2222","22","*") returns "abc 2 def * ghi ** jkl ***". To replace only
sequential substrings, use replace. For more information, see “Replace Repeated Pattern”.

Version History
Introduced in R2022b

See Also
replace | replaceBetween

 strrep

6-81

strtrim
Remove leading and trailing white space from string

Syntax
newStr = strtrim(str)

Description
newStr = strtrim(str) removes the leading and trailing whitespace characters from the string
str. Use this operator in the Requirements Table block.

Examples

Delete Leading and Trailing Spaces from String

In a Requirements Table block, create a requirement that deletes the leading and trailing space
characters in a string.

y = strtrim(" Hello, world! ")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

6 Operators

6-82

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
strip

 strtrim

6-83

t
Elapsed time of simulation

Syntax
t

Description
t returns the simulation time in seconds. You can use this operator only in the Requirements Table
block.

Examples

Check if Variable Equals Simulation Time

In a precondition, check if the variable a is equal to the simulation time in seconds.

Tips
• t captures the time of the highest model in the model hierarchy. As a result, t is the same value in

each Requirements Table block used in a simulation, including disabled blocks in Enabled
Subsystem blocks.

Version History
Introduced in R2022a

See Also
Requirements Table | isStartup | duration | getPrevious

Topics
“Use a Requirements Table Block to Create Formal Requirements”
“Control Requirement Execution by Using Temporal Logic”

6 Operators

6-84

upper
Convert a string to uppercase

Syntax
newStr = upper(str)

Description
newStr = upper(str) converts the lowercase characters in the string str to the corresponding
uppercase characters. Use this operator in the Requirements Table block.

Examples

Convert String to Uppercase

In a Requirements Table block, create a requirement that converts the lowercase characters in the
string "Hello, world!" to uppercase characters. The output is "HELLO, WORLD!".

y = upper("Hello, world!")

Input Arguments
str — Input string
string scalar

Input string, specified as a string scalar. Enclose literal strings with double quotes.
Example: "Hello"
Data Types: string

Output Arguments
newStr — Output string
string scalar

Output string, returned as a string scalar.

 upper

6-85

Limitations
• This operator does not support the use of Simulink.Bus object fields.

Version History
Introduced in R2022b

See Also
lower | reverse

6 Operators

6-86

Objects

7

AssumptionRow
Work with assumptions in Requirements Table block

Description
AssumptionRow objects represent assumptions in Requirements Table blocks. Use AssumptionRow
objects to programmatically adjust the assumption properties.

Creation
There are several ways to create a AssumptionRow object:

• Create a new assumption in a Requirements Table block by using the addAssumptionRow object
function.

• Create an assumption interactively in the Requirements Table block, then get the associated
AssumptionRow object by using the getAssumptionRows object function.

Properties
Index — Index of assumption
character vector (default)

This property is read-only.

Index of the assumption, returned as a character vector. When you create a new assumption, the
software automatically assigns the assumption a unique index.

Preconditions — Precondition expression
{''} (default) | cell array of character vectors

Precondition expression, specified as a cell array of a character vector. For more information on
preconditions in assumptions, see “Add Assumptions to Requirements”.
Data Types: char | cell

Postconditions — Postcondition expression
{''} (default) | cell array of character vectors

Postcondition expression, specified as a cell array of a character vector. For more information on
postconditions in assumptions, see “Add Assumptions to Requirements”.
Data Types: char | cell

Summary — Assumption summary text
"" (default) | string scalar | character vector

Assumption summary text, specified as a string scalar or character vector. Use this property to add
text to the Summary column in the Assumptions tab of the Requirements Table block.
Data Types: char | string

7 Objects

7-2

Object Functions
addChild Add child requirement or assumption to Requirements Table block
getChildren Retrieve child requirements and assumptions in Requirements Table block
clear Clear row in Requirements Table block
removeRow Remove Requirements Table block row

Examples

Create Assumptions and Set Preconditions and Postconditions

In a RequirementsTable object named reqTable, add two assumptions.

addAssumptionRow(reqTable);
addAssumptionRow(reqTable);

Retrieve the AssumptionRow objects.

aRow = getAssumptionRows(reqTable);

Set the preconditions for the assumptions.

aRow(1).Preconditions = {'u1 > 1'};
aRow(2).Preconditions = {'u1 > 0'};
aRow(3).Preconditions = {'u1 > -1'};

Set the postconditions for the assumptions.

aRow(1).Postconditions = {'u2 > 1'};
aRow(2).Postconditions = {'u2 > 0'};
aRow(3).Postconditions = {'u2 < -1'};

Version History
Introduced in R2022a

See Also
Objects
RequirementsTable | RequirementRow

Functions
addAssumptionRow | getAssumptionRows

 AssumptionRow

7-3

RequirementRow
Work with requirements in Requirements Table block

Description
RequirementRow objects represent requirements in Requirements Table blocks. Use the objects to
programmatically adjust the requirement properties.

Creation
There are several ways to create a RequirementRow object:

• Create a new requirement in a Requirements Table block by using the addRequirementRow
object function.

• Create a requirement interactively in the Requirements Table block, then get the associated
RequirementRow object by using the getRequirementRows object function.

Properties
Actions — Action expression
{''} (default) | cell array of character vectors

Action expressions, specified as a cell array of character vectors. For more information on actions,
see “Use a Requirements Table Block to Create Formal Requirements”.
Data Types: cell | char

Duration — Duration expression
"" (default) | string scalar | character vector

Duration expression, entered as a string scalar or character vector.
Data Types: char | string

Index — Index of requirement
character vector (default)

This property is read-only.

Index of the requirement, returned as a character vector. When you create a new requirement, the
software automatically assigns the requirement a unique index.

Preconditions — Precondition expression
{''} (default) | cell array of character vectors

Precondition expressions, specified as a cell array of character vectors. You can also use the
addRequirementRow object function to set the Precondition property when you create the
RequirementRow object.

7 Objects

7-4

Example: reqRow.Preconditions = {'u1 > 0','','u3 > 0'} specifies the preconditions in a
requirement with u1 > 0 in the first Precondition column, nothing in the second Precondition
column, and u3 > 0 in the third Precondition column.
Data Types: cell | char

Postconditions — Postcondition expression
{''} (default) | cell array of character vectors

Postcondition expressions, specified as a cell array of character vectors.
Example: reqRow.Postconditions = {'u1 > 0','','u3 > 0'} specifies the postconditions in
a requirement with u1 > 0 in the first Postcondition column, nothing in the second Postcondition
column, and u3 > 0 in the third Postcondition column.
Data Types: cell | char

Summary — Requirement summary text
"" (default) | string scalar | character vector

Requirement summary text, specified as a string scalar or character vector. Use this property to add
text to the Summary column in the Requirements tab of the Requirements Table block.
Data Types: char | string

Object Functions
addChild Add child requirement or assumption to Requirements Table block
getChildren Retrieve child requirements and assumptions in Requirements Table block
clear Clear row in Requirements Table block
removeRow Remove Requirements Table block row

Examples

Create Requirements and Set Preconditions and Postconditions

In a RequirementsTable object named reqTable, add two additional requirements.

addRequirementRow(reqTable);
addRequirementRow(reqTable);

Retrieve the RequirementRow objects.

rRow = getRequirementRows(reqTable);

Set the preconditions for the requirements.

rRow(1).Preconditions = {'u1 > 1'};
rRow(2).Preconditions = {'u1 > 0'};
rRow(3).Preconditions = {'u1 > -1'};

Set the postconditions for the requirements.

 RequirementRow

7-5

rRow(1).Postconditions = {'u2 > 1'};
rRow(2).Postconditions = {'u2 > 0'};
rRow(3).Postconditions = {'u2 < -1'};

Version History
Introduced in R2022a

See Also
Objects
RequirementsTable | AssumptionRow

Functions
addRequirementRow | getRequirementRows

7 Objects

7-6

RequirementsTable
Configure Requirements Table blocks

Description
Use RequirementsTable objects to configure Requirements Table blocks.

Creation
There are several ways to create a RequirementsTable object:

• Use the slreq.modeling.create function to create a new Simulink model that contains a
Requirements Table block.

• Add a Requirements Table block to an existing model using add_block and retrieve the object
with the slreq.modeling.find function.

Properties
Name — Name of Requirements Table block
"Requirements Table" (default) | string scalar | character vector

Name of the Requirements Table block, specified as a string scalar or character vector.
Example: table.Name = "tableName" changes the block name to tableName
Data Types: char | string

Path — Path of Requirements Table block
string scalar | character vector

This property is read-only.

Path of the Requirements Table block, specified as a string scalar or character vector.
Data Types: char | string

RequirementHeaders — Requirements Table block headers
structure array

Requirements Table block headers, specified as a structure array. Specify headers to add under the
Precondition, Postcondition, and Action columns in the Requirements tab by setting the
Preconditions, Postconditions, and Actions fields to a string vector or cell array of character
vectors. Use a cell array to add multiple columns under the Precondition, Postcondition, and
Action columns.
Example: table.RequirementHeaders.Preconditions = ["u1","",""] changes the
Precondition column header where one header is u1 and the other two are empty.
Data Types: struct

 RequirementsTable

7-7

Object Functions
addRequirementRow Add requirement to Requirements Table block
addAssumptionRow Add assumption to Requirements Table block
addSymbol Add data to Requirements Table block
clear Clear row in Requirements Table block
getAssumptionRows Retrieve assumptions in Requirements Table block
getRequirementRows Retrieve requirements in Requirements Table block
findSymbol Retrieve data in Requirements Table block
hideAssumptionColumn Hide Precondition column in Assumptions tab
hideRequirementColumn Hide columns in Requirements tab
removeRow Remove Requirements Table block row
showAssumptionColumn Show Precondition column in Assumptions tab
showRequirementColumn Show columns in Requirements tab

Examples

Change Name of a Requirements Table Block

Create a new model called myModel that contains a Requirements Table block.

table = slreq.modeling.create("myModel");

Change the name of the block to newTableName.

table.Name = "newTableName";

Specify Precondition, Postcondition, and Action Columns

Create a new model called myModel that contains a Requirements Table block.

table = slreq.modeling.create("myModel");

Specify three Precondition columns with empty headers.

table.RequirementHeaders.Preconditions = ["","",""];

Specify two Postcondition columns where one header is u1 and the other is empty.

table.RequirementHeaders.Postconditions = ["u1",""];

Specify two Action columns with the headers u2 and u3.

table.RequirementHeaders.Actions = ["u2","u3"];

Version History
Introduced in R2022a

See Also
Blocks
Requirements Table

7 Objects

7-8

Objects
AssumptionRow | RequirementRow | Symbol

Functions
slreq.modeling.create | slreq.modeling.find

 RequirementsTable

7-9

slreq.TextRange
Line range

Description
Use slreq.TextRange objects to describe lines of code in a MATLAB code or plain-text external
code file.

Creation
There are several ways to create an slreq.TextRange object:

• Create a link to MATLAB or plain-text external code by using the Requirements Editor. See
“Requirements Traceability for MATLAB Code”.

• Use slreq.createTextRange.

Properties
Artifact — Name of file containing lines of code
character vector

This property is read-only.

Name of the file containing the lines of code, returned as a character vector.

Id — Line range identifier
character vector

This property is read-only.

Line range identifier, returned as a character vector.

Domain — Domain of artifact
character vector

This property is read-only.

Domain of the artifact that contains the linkable object, returned as a character vector.

Parent — MATLAB Function block SID
character vector

This property is read-only.

MATLAB Function block SID, returned as a character vector.

This property is empty for line ranges in MATLAB code files or other plain-text external code files,
such as C files.

7 Objects

7-10

Object Functions
deleteLinks Delete links for line ranges
getLineRange Get line numbers for line range
getLinks Get links for line range
getText Get contents of line range
remove Delete unused line ranges
setLineRange Set line numbers for line range
show Open and highlight line range in MATLAB Editor

Examples

Create Line Ranges and Link to Requirement

This example shows how to create an slreq.TextRange object and link it to a requirement.

Create an slreq.TextRange object that corresponds to line numbers 1 and 2 in the myAdd function.

tr = slreq.createTextRange("myAdd.m",[1 2]);

View the slreq.TextRange object in the MATLAB® Editor.

show(tr);

Load the myAddRequirements requirement set.

rs = slreq.load("myAddRequirements");

Get a handle to the requirement with the summary Add u and v.

req = find(rs,Summary="Add u and v");

Create a link from the slreq.TextRange object to the requirement.

myLink = slreq.createLink(tr,req);

Version History
Introduced in R2022b

See Also
slreq.createTextRange | slreq.getTextRange

Topics
“Requirements Traceability for MATLAB Code”
“Create and Store Links”

 slreq.TextRange

7-11

slreq.View
View settings

Description
Use slreq.View objects to apply and manage the view settings for the Requirements Editor and
Requirements Perspective.

Creation
Create a View object by using create.

Properties
Name — View name
character vector | string scalar

View name, specified as a character vector or string scalar.
Example: "myView"

ReqFilter — Requirement filter
character array | string scalar

Requirement filter, specified as a character array or a string scalar. The contents of the character
vector or string scalar must be formatted as a cell array.
Example: "{'ReqType','Functional'};"

LinkFilter — Link filter
character array | string scalar

Link filter, specified as a character array or a string scalar. The contents of the character vector or
string scalar must be formatted as a cell array.
Example: "{'LinkType','Relate'};"

Host — Host requirement set
character array

This property is read-only.

Host requirement set that the view is stored in, returned as a character array. If the view is in the
preferences folder, the host is empty.

Object Functions
activate Apply view settings
activateDefaultView Apply default view settings

7 Objects

7-12

create Create view settings
delete Delete view settings
getActiveView Get applied view settings
getErrorMessage Get view settings error message
getViews Get available views
isValid Check validity of view settings

Examples

Create and Apply View to Requirements Editor

This example shows how to create a view and apply it to the Requirements Editor and
Requirements Perspective.

Open the myAddRequirements requirement set, which contains requirements with Type set to
Functional.

rs = slreq.open("myAddRequirements");

Create a view with the name NewView.

myView = slreq.View.create("NewView")

myView =
 View with properties:

 Name: 'NewView'
 ReqFilter: ''
 LinkFilter: ''
 Host: ''

Set the requirement filter to only display requirements that have Type set to Container.

myView.ReqFilter = "{'ReqType','Container'};"

myView =
 View with properties:

 Name: 'NewView'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

Check if the view is valid.

tf = isValid(myView)

tf = logical
 1

Apply the view to the Requirements Editor and Requirements Perspective.

activate(myView)

 slreq.View

7-13

Confirm that the active view is NewView.

appliedView = slreq.View.getActiveView

appliedView =
 View with properties:

 Name: 'NewView'
 ReqFilter: "{'ReqType','Container'};"
 LinkFilter: ''
 Host: ''

The myAddRequirements requirement set does not contain any requirements with Type set to
Container, so all of the requirements are filtered out.

Clear the loaded requirement sets and link sets and close the Requirements Editor.

slreq.clear;

Version History
Introduced in R2022b

See Also
Apps
Requirements Editor

Topics
“Filter Requirements and Links in the Requirements Editor”
“Where MATLAB Stores Preferences”

7 Objects

7-14

Symbol
Configure data in Requirements Table blocks

Description
Symbol objects represent the data in Requirements Table blocks. Use Symbol objects to configure
the input, output, parameter, local, and constant data in a Requirements Table block.

Creation
There are several ways to create a Symbol object:

• Create new data in a Requirements Table block by using the addSymbol object function.
• Create new data interactively in the Requirements Table block, then get the associated Symbol

object by using the findSymbol object function.

Properties
Complexity — Whether data accepts complex values
"Off" (default) | "On" | "Inherited"

Whether the data accepts complex values, specified as one of these values:

Complexity Description
"Inherited" The data inherits complexity based on the Scope

property. Input and output data inherit
complexity from the Simulink signals connected
to the associated input and output ports. Local
and parameter data inherit complexity from the
parameter to which the data is bound.

"Off" The data is a real number.
"On" The data is a complex number.

Data Types: enumerated

isDesignOutput — Whether data is design model output
false or 0 (default) | true or 1

Whether the data is a design model output, specified as a numeric or logical 1 (true) or 0 (false).
This property applies only when the Scope property is Input. For more information, see “Treat as
design model output for analysis”.
Data Types: logical

Name — Name of data
"data" (default) | string scalar | character vector

 Symbol

7-15

Name of the data, specified as a string scalar or character vector.
Data Types: char | string

Scope — Scope of data
"Input" (default) | "Output" | "Local" | "Constant" | "Parameter"

Scope of the data that specifies where the data resides in memory relative to the block, specified as
one of these values:

Scope Description
"Input" The data is an input signal to a Requirements

Table block.
"Output" The data is an output signal of a Requirements

Table block.
"Local" The data is defined in the current block only.
"Constant" The data is a read-only constant value that is

visible to the block.
"Parameter" The data resides in a variable of the same name

in the MATLAB workspace, the model workspace,
or in the workspace of a masked subsystem that
contains this block.

Data Types: enumerated

Size — Size of data
"-1" (default) | string scalar | character vector

Size of the data, specified as a string scalar or character vector. This property must resolve to a
scalar value or a MATLAB vector of values. The default value is "–1", which means that the size is
inherited. For more information, see “Inherit Size from Simulink” (Simulink).
Data Types: char | string

Type — Data type
"Inherit: Same as Simulink" (default) | "double" | "single" | "int8" | ...

Data type, specified as:

• "Inherit: Same as Simulink"
• "double"
• "single"
• "half"
• "int64"
• "int32"
• "int16"
• "int8"
• "uint64"
• "uint32"

7 Objects

7-16

• "uint16"
• "uint8"
• "boolean"
• "string"
• "fixdt(1,16,0)"
• "fixdt(1,16,2^0,0)"
• "Enum: <class name>"
• "Bus: <object name>"

To modify the data type properties, use the Symbols pane and Property Inspector. For more
information, see “Set Data Types in Requirements Table Blocks”.
Data Types: enumerated

Examples

Add Data to a Requirements Table Block

Create a new model called myModel that contains a Requirements Table block.

table = slreq.modeling.create("myModel");

Add data named u1 to the block.

data = addSymbol(table,Name="u1");

Retrieve Data and Change It

From a model named myModel that contains a Requirements Table block, retrieve the
RequirementsTable object.

table = slreq.modeling.find("myModel");

Retrieve the Symbol objects from the block.

data = findSymbols(table);

Change the properties of the first Symbol object in the array.

data(1).Name = "u1";
data(1).Scope = "Output";

Version History
Introduced in R2022a

See Also
addSymbol | findSymbol

 Symbol

7-17

	Functions
	addAssumptionRow
	addChild
	addLink
	addRequirementLink
	addRequirementRow
	addResourceProperty
	addSymbol
	addTextProperty
	clear
	slreq.clear
	slreq.closeRequirementsManager
	slreq.cmConfigureVersion
	slreq.cmGetVersion
	commit
	slreq.convertAnnotation
	create
	slreq.modeling.create
	createChangeRequest
	slreq.createLink
	createRequirement
	createRequirementCollection
	createTestCase
	createTestExecutionRecord
	createTestPlan
	createTestResult
	createTestScript
	slreq.createTextRange
	slreq.dngConfigure
	slreq.dngCountLinks
	slreq.dngGetProjectConfig
	slreq.dngGetUsedConfig
	slreq.dngUpdateConfig
	slreq.editor
	slreq.exportViewSettings
	fetch
	slreq.find
	slreq.modeling.find
	findSymbol
	slreq.generateReport
	slreq.generateTraceabilityDiagram
	slreq.generateTraceabilityMatrix
	getAssumptionRows
	getChildren
	getConfigurationContextNames
	getCreationFactory
	getCustomLoginProvider
	slreq.getCurrentImportOptions
	slreq.getCurrentObject
	getDialog
	slreq.getExternalURL
	getLinks
	slreq.getNavigationFcn
	getProducedTestExecutionRecord
	getProperty
	getQueryService
	getRDF
	slreq.getReportOptions
	getReportsOnTestCase
	getRequirementLinks
	getRequirementRows
	getResourceProperty
	getRunsTestCase
	getServer
	getServiceProviderNames
	getSLRequirements
	getStatus
	slreq.getTraceabilityMatrixOptions
	slreq.getTextRange
	getUser
	hideAssumptionColumn
	hideRequirementColumn
	slreq.import
	slreq.importViewSettings
	slreq.load
	login
	slreq.inLinks
	slreq.new
	slreq.open
	slreq.openRequirementsManager
	slreq.outLinks
	queryChangeRequests
	queryRequirementCollections
	queryRequirements
	queryTestCases
	queryTestExecutionRecords
	queryTestPlans
	queryTestResults
	queryTestScripts
	slreq.refreshCustomizations
	slreq.refreshLinkDependencies
	slreq.registerNavigationFcn
	remove
	removeLink
	removeRequirementLink
	removeResourceProperty
	removeRow
	slreq.resetViewSettings
	rmi
	rmidata.export
	rmimap.map
	rmidata.save
	rmidocrename
	rmiobjnavigate
	rmipref
	rmiref.insertRefs
	rmiref.removeRefs
	rmitag
	RptgenRMI.doorsAttribs
	setCatalogPath
	setConfigurationContext
	setConfigurationQueryPath
	setCustomLoginProvider
	setHttpHeader
	setHttpOptions
	setProperty
	setQueryParameter
	setRDF
	setResourceUrl
	setServer
	setServiceProvider
	setServiceRoot
	setUser
	show
	showAssumptionColumn
	showRequirementColumn
	slwebview_req
	slreq.show
	slreq.structToObj
	view

	Classes
	oslc.Client
	oslc.cm.ChangeRequest
	oslc.core.CreationFactory
	oslc.core.Dialog
	oslc.core.QueryCapability
	oslc.qm.TestCase
	oslc.qm.TestExecutionRecord
	oslc.qm.TestPlan
	oslc.qm.TestResult
	oslc.qm.TestScript
	oslc.rm.Requirement
	oslc.rm.RequirementCollection
	slreq.BaseEditableItem
	slreq.BaseItem
	slreq.Justification
	slreq.Link
	slreq.LinkSet
	slreq.Reference
	slreq.ReqSet
	slreq.Requirement
	slreq.callback.CustomImportOptions
	slreq.callback.DOORSImportOptions
	slreq.callback.MSExcelImportOptions
	slreq.callback.MSWordImportOptions
	slreq.callback.ReqIFImportOptions
	slreq.verification.services.TAP
	slreq.verification.services.JUnit

	Methods
	slreq.Justification.add
	slreq.Justification.addComment
	slreq.Justification.children
	slreq.Justification.copy
	slreq.Justification.demote
	slreq.Justification.find
	slreq.Justification.getAttribute
	slreq.Justification.isFilteredIn
	slreq.Justification.isHierarchical
	slreq.Justification.move
	slreq.Justification.moveDown
	slreq.Justification.moveUp
	slreq.Justification.outLinks
	slreq.Justification.parent
	slreq.Justification.promote
	slreq.Justification.remove
	slreq.Justification.reqSet
	slreq.Justification.setAttribute
	slreq.Justification.setHierarchical
	slreq.Link.destination
	slreq.Link.getAttribute
	slreq.Link.isFilteredIn
	slreq.Link.isResolved
	slreq.Link.isResolvedDestination
	slreq.Link.isResolvedSource
	slreq.Link.linkSet
	slreq.Link.remove
	slreq.Link.setAttribute
	slreq.Link.setDestination
	slreq.Link.setSource
	slreq.Link.source
	slreq.LinkSet.addAttribute
	slreq.LinkSet.createTextRange
	slreq.LinkSet.deleteAttribute
	slreq.LinkSet.exportToVersion
	slreq.LinkSet.find
	slreq.LinkSet.getLinks
	slreq.LinkSet.getRegisteredReqSets
	slreq.LinkSet.getTextRange
	slreq.LinkSet.getTextRanges
	slreq.LinkSet.importProfile
	slreq.LinkSet.inspectAttribute
	slreq.LinkSet.profiles
	slreq.LinkSet.redirectLinksToImportedReqs
	slreq.LinkSet.removeProfile
	slreq.LinkSet.save
	slreq.LinkSet.sources
	slreq.LinkSet.updateAttribute
	slreq.LinkSet.updateBacklinks
	slreq.LinkSet.updateDocUri
	slreq.LinkSet.updateRegisteredReqSets
	slreq.Reference.add
	slreq.Reference.addComment
	slreq.Reference.children
	slreq.Reference.find
	slreq.Reference.getAttribute
	slreq.Reference.getImplementationStatus
	slreq.Reference.getPostImportFcn
	slreq.Reference.getPreImportFcn
	slreq.Reference.getVerificationStatus
	slreq.Reference.hasNewUpdate
	slreq.Reference.inLinks
	slreq.Reference.isFilteredIn
	slreq.Reference.isJustifiedFor
	slreq.Reference.justifyImplementation
	slreq.Reference.justifyVerification
	slreq.Reference.moveDown
	slreq.Reference.moveUp
	slreq.Reference.navigateToExternalArtifact
	slreq.Reference.parent
	slreq.Reference.outLinks
	slreq.Reference.remove
	slreq.Reference.reqSet
	slreq.Reference.setAttribute
	slreq.Reference.setParent
	slreq.Reference.setPostImportFcn
	slreq.Reference.setPreImportFcn
	slreq.Reference.unlock
	slreq.Reference.unlockAll
	slreq.Reference.updateFromDocument
	slreq.ReqSet.add
	slreq.ReqSet.addAttribute
	slreq.ReqSet.addJustification
	slreq.ReqSet.children
	slreq.ReqSet.close
	slreq.ReqSet.createReferences
	slreq.ReqSet.discard
	slreq.ReqSet.deleteAttribute
	slreq.ReqSet.explore
	slreq.ReqSet.exportToVersion
	slreq.ReqSet.find
	slreq.ReqSet.getImplementationStatus
	slreq.ReqSet.getPostLoadFcn
	slreq.ReqSet.getPreSaveFcn
	slreq.ReqSet.getVerificationStatus
	slreq.ReqSet.importFromDocument
	slreq.ReqSet.importProfile
	slreq.ReqSet.inspectAttribute
	slreq.ReqSet.profiles
	slreq.ReqSet.removeProfile
	slreq.ReqSet.runTests
	slreq.ReqSet.save
	slreq.ReqSet.setPostLoadFcn
	slreq.ReqSet.setPreSaveFcn
	slreq.ReqSet.updateAttribute
	slreq.ReqSet.updateImplementationStatus
	slreq.ReqSet.updateReferences
	slreq.ReqSet.updateSrcArtifactUri.xml
	slreq.ReqSet.updateSrcFileLocation
	slreq.ReqSet.updateVerificationStatus
	slreq.Requirement.add
	slreq.Requirement.addComment
	slreq.Requirement.children
	slreq.Requirement.copy
	slreq.Requirement.demote
	slreq.Requirement.find
	slreq.Requirement.getAttribute
	slreq.Requirement.getImplementationStatus
	slreq.Requirement.getVerificationStatus
	slreq.Requirement.inLinks
	slreq.Requirement.isFilteredIn
	slreq.Requirement.isJustifiedFor
	slreq.Requirement.justifyImplementation
	slreq.Requirement.justifyVerification
	slreq.Requirement.move
	slreq.Requirement.moveDown
	slreq.Requirement.moveUp
	slreq.Requirement.outLinks
	slreq.Requirement.parent
	slreq.Requirement.promote
	slreq.Requirement.remove
	slreq.Requirement.reqSet
	slreq.Requirement.setAttribute
	deleteLinks
	getLineRange
	getLinks
	getText
	remove
	setLineRange
	show
	activate
	activateDefaultView
	create
	delete
	getActiveView
	getErrorMessage
	getViews
	isValid

	Blocks
	Requirements Table
	System Requirements

	Requirements Toolbox Tools and Apps
	Requirements Editor
	Profile Editor

	Operators
	contains
	duration
	endsWith
	erase
	eraseBetween
	extractAfter
	extractBefore
	getPrevious
	hasChanged
	hasChangedFrom
	hasChangedTo
	insertAfter
	insertBefore
	isletter
	isspace
	isStartup
	isstring
	lower
	matches
	plus
	replace
	replaceBetween
	reverse
	startsWith
	str2double
	strcmp
	strcmpi
	strfind
	string
	strip
	strlength
	strncmp
	strncmpi
	strrep
	strtrim
	t
	upper

	Objects
	AssumptionRow
	RequirementRow
	RequirementsTable
	slreq.TextRange
	slreq.View
	Symbol

